
Untitled Document

Content in this document was produced in collaboration with Lotus® and IBM® Redbooks®.

Best Practices for Building Domino 8 Web Applications

● Key recommendations for updating existing Web applications
● Best Practices for refining application look and feel for the Web
● Common tips and techniques

March 2008

● Bruce Lill
● Bruno Grange
● Chris Toohey
● Debra Landon
● Jennifer Heins

● Jimmy Minata
● John Noltensmeyer
● Joseph D'Armi
● Lisa Schenkewitz
● Louis Orenstein

 and

Copyright IBM Corp. 2008. All rights
reserved.

file:///C|/Documents%20and%20Settings/Administrator/My%...hnicalContent/redbooks/itsodomwebapp/titlepage-dom.html (1 of 2)9/12/2008 9:03:49 AM

Untitled Document

This PDF is a snapshot of the original Wiki content

The original wiki content was produced in collaboration with Lotus® and IBM® Redbooks®. This PDF snapshot has
been created as a reference of that original content.

Note: Some links in this PDF will take you back to the Wiki, rather than keep you within this PDF.

Find the latest information on the Wiki

Visit the Lotus Domino Designer Wiki for the latest information and comments contributed by IBM and the community of
readers.

file:///C|/Documents%20and%20Settings/Administrator/My%...hnicalContent/redbooks/itsodomwebapp/titlepage-dom.html (2 of 2)9/12/2008 9:03:49 AM

http://www-10.lotus.com/ldd/ddwiki.nsf

Space Details
Key: dominoappdev

Name: Lotus Domino Web Application Development

Description:

Creator (Creation Date): dwblogadmin (Feb 04, 2008)

Last Modifier (Mod. Date): dwblogadmin (Feb 04, 2008)

Available Pages

• 0.0 Preface
• Riverbend Coffee and Tea Company

• 1.0 Primer
• HTML primer

• Content type
• DOCTYPE
• Working with HTML in Domino

• Java primer
• A simple Java program
• Introduction to applets
• Introduction to classes and objects
• Working with Java in Domino Designer

• JavaScript primer
• DHTML
• The Document Object Model
• Using JavaScript with HTML
• Working with JavaScript in Domino Designer

• Styles and CSS primer
• Web 2.0 primer

• Introduction to AJAX
• Introduction to JSON

• Web services primer
• Web standards primer

• Application programming interface
• XML primer

• 2.0 Getting started
• Architectural, project, and visual design considerations

• Architectural patterns
• Thoughts about content

• Domino Web capabilities
• Planning for accessibility and compliance
• Understanding the Web browser client environment

• 3.0 Understanding the Domino design elements

Document generated by Confluence on Apr 04, 2008 19:03 Page 1

• Database
• Default Launch Elements
• Tab specific database functionality

• Domino design elements
• A design elements overview

• Adding HTML to a design
• All Domino URLs
• CGI variables
• Changing the content type of a design element
• Common design properties on Web applications
• Styling text for the Web
• Working with the DOCTYPE

• Agent design elements
• Applet design elements
• Design element multi-aliasing
• File resources design elements
• Folder design elements
• Form design elements

• HTMLOptions and HTMLTagAttribute fields
• Special reserved fields
• Understanding the form HTML source code
• Using forms versus pages

• Frameset design elements
• Image resource design elements
• Java library design elements
• JavaScript library design elements
• LotusScript library design elements
• Page design elements

• Using pages to submit data
• Profile documents
• Shared field design elements
• Subforms design elements
• View design elements

• Rapid application development
• SearchTemplate

• Web service design elements
• 4.0 Building Domino Web applications

• Error handling
• Input validation - Client side
• Input validation - Server side
• Interactive data (Web 2.0)
• Login screens

• Built-in forms using $$LoginUserForm
• Custom login screens using Domcfg.nsf
• Database that came with Domino R5

Document generated by Confluence on Apr 04, 2008 19:03 Page 2

• Navigation techniques
• Moving past the frameset - Making Web-based applications that do not

look like Lotus Notes
• No more twisties - Using single category and a combobox to filter the

view
• View-based menus

• Personalization
• Searching

• Creating custom and advanced searches using Domino
• Customizing the search results display
• Searching via Domino URL commands
• Searching via FTsearch and DBSearch

• robots.txt
• Search engines and search engine optimization
• SEO techniques

• URL considerations
• User management
• Using interactive data and Web services
• Working with data

• JSON
• RSS
• Using query views

• 5.0 Extending rich client applications for Web clients
• Benefits and pitfalls of extending rich client applications for Web clients
• Data management in hybrid rich and Web client applications
• Defining functional requirements based on client type
• Developing hybrid rich client and Web client applications

• 6.0 Server configuration
• Logging
• Performance considerations
• Security considerations

• SSL support
• Setting up SSL with a self-certified certificate

• Server error handling
• Global 404 error form
• Web server configuration database

• Topology
• Working with Web site rules

• Directory rules
• HTTP Response Header rules
• Overriding Session Authentication rules
• Redirection and Substitution rules

• 7.0 Developer tools and resources
• Domino resources
• Web development resources

Document generated by Confluence on Apr 04, 2008 19:03 Page 3

• Web development tools
• Looking ahead to version 8.5

Document generated by Confluence on Apr 04, 2008 19:03 Page 4

0.0 Preface

This page last changed on Apr 03, 2008 by jservais.

• Assumptions
• Meet the authors
• Become a contributor
• Comments welcome
• Conventions

This section of the wiki contains a collection of best practices for building and updating Lotus® Domino®
Web applications. The topics vary widely and range from key recommendations for updating existing Web
applications and best practices for refining the look and feel of Domino applications for the Web, to
common tips and techniques.

Assumptions

This information assumes that you have some basic Web development skills.

Meet the authors

Authors

Bruce Lill (brucelill) has been providing Notes®
solutions since Lotus Notes V2.0. Bruce is a
certified Developer, Administrator and Instructor.
Bruce He spends his time building secure Web
sites for companies and state governments. His
satisfaction doesn't come until the site is validated
and the customer is happy. Bruce can be
contacted by sending e-mail to
bruce@kalechi.com.

Bruno Grange (brunogrange) is an IBM®
certified advanced application developer,
instructor and system administration specialist on
Lotus Notes/Domino. He works for IBM as an
application developer, participating on various
global delivery projects using Lotus Notes/Domino.
Bruno has over eight years of experience, which
includes working with several IBM business
partners in Brazil as Procwork, WJ and
Cyberlynxx. Bruno has in-depth experience with
Web application development and implementation
Web 2.0 using Lotus architecture. He is a

Document generated by Confluence on Apr 04, 2008 19:03 Page 5

coordinator of the AS Brazil Notes/Domino team, a
group of developers in IBM Brazil that brainstorms
new ways to promote Lotus Notes brand. He also
maintains a personal Web site with information
and tips about Lotus and Web application
development at www.grange.com.br. Bruno can be
contacted by sending e-mail to
brunog@br.ibm.com.

Chris Toohey (christoohey) is a published
developer and Webmaster of DominoGuru.com, a
Lotus Notes/Domino-themed "Tips & Tricks" Web
site and Weblog. He is the Chief Solutions
Architect for Clearframe and specializes in
integrating IBM Lotus Notes/Domino with other
enterprise-level solutions. Since entering the IT
industry in 1998, Chris's unconventional
methodologies, forward thinking and his ability to
uniquely analyze and attack a given problem
with award winning solutions has afforded him
recognition as an expert in his field, as well as
yielding many happy customers.

Jimmy Minata (jminata) has over 13 years of
domino development and administration
experience. He specializes in developing Web
applications by using CSS, DHTML, and AJAX and
is an expert in integrating Domino with relational
databases such as DB2®, SQL Server®, and
Oracle®. As a senior consultant and a CRM
Framework Manager with PSC Group, he has
successfully architected and implemented CRM,
Workflow, Portal, and Content Management
application at various clients.

John Noltensmeyer (jnoltensmeyer) has over 12
years experience as a Lotus Notes developer and
administrator and is certified as both a Notes
developer and administrator in each release from
R3 to ND8. He is also a Sun™ Certified Java™
Programmer, MCSE, and holds the Certified
Information Systems Security Professional (CISSP)
designation. John has been developing Domino
web applications since 1997 and standards-based
Web design is one of his passions. You can contact
John by sending e-mail to
john.noltensmeyer@usa.net.

Joseph D'Armi (josephd) has worked with Lotus
Notes since version 3 and spent the last 10 years
focused on Domino Web-based applications. Has
architected collaborative sales, marketing and
financial applications; content management
systems for corporate Web sites and intranets;
and commerce sites most notably the Lotus
sponsored online shop for Manchester United

Document generated by Confluence on Apr 04, 2008 19:03 Page 6

http://www.grange.com.br/
http://www.dominoguru.com

Football Club.

Lisa Schenkewitz (schenkew@us.ibm.com) has
worked with Lotus Notes for 15 years since
Version 3 and also has been certified in each
release as a principal developer and
administrator. Has done several notes project,
including consulting and design reviews, and most
recently an IBM Domino-based Web site for IBM
manufacturing. She is an adjunct member of the
Lotus Notes IBM Center of Competency (CoC).

Louis Orenstein (lorenstein) has been supporting
and troubleshooting the Lotus Domino HTTP task
for both performance and interoperability issues
for over four years and currently serves as the
team lead for the level 2 North America support
team.

Debbie Landon (dalandon) is an IBM Certified
Senior IT Specialist in the IBM ITSO, Rochester
Center. Her current area of expertise is the
System i collaboration products, including IBM
Lotus Domino and related Lotus products, such as
Sametime® and QuickPlace®. Debbie has been
with IBM for 24 years working first with the S/36
and then the AS/400®, which has since evolved to
the iSeries® server and is now the IBM System i™
platform. Before joining the ITSO in November of
2000, Debbie was a member of the PartnerWorld®
for Developers iSeries team, supporting IBM
Business Partners in the area of Domino for
iSeries. You can contact Debbie by sending e-mail
to dalandon@us.ibm.com.

Jennifer Heins (heinsje) is the senior information
architect and strategist for the Lotus and
WebSphere® Portal family of products. She is
currently driving innovation in how IBM plans,
develops, and delivers technical information. Some
specific goals include planning a broad spectrum of
technical content deliverables for various
audiences and skill levels, enabling customers,
partners, and IBM to collaborate and interact with
information, and fostering a knowledge sharing
culture inside and outside of IBM through wikis
and other technology. She also works closely with
IBM and SWG groups to contribute to standards
and guidelines used across IBM for technical
information. Jennifer has been at IBM for 10 years
working first in the WebSphere software brand and
then moved to pervasive technology, which
evolved into the current set of WebSphere Portal
family and Lotus products. You can contact
Jennifer by sending e-mail to heinsj@us.ibm.com.

Document generated by Confluence on Apr 04, 2008 19:03 Page 7

Supporting contributors and reviewers

Thanks to the following people for their contributions to this project:

Mark Jourdain IBM Lotus Domino Product Manager

Become a contributor

Join us for a two- to six-week residency program! Share your knowledge with peers in the industry and
learn from others. Help create content about specific products or solutions, while getting hands-on
experience with leading-edge technologies. You will have the opportunity to team with IBM technical
professionals, Business Partners, and Clients. Your efforts will help increase product acceptance and
customer satisfaction. As a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and apply online at:
ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want the content in this wiki and all our wikis to be as helpful as possible. Provide us your comments
in one fo the following ways:

• Use the commenting feature with in the wiki. Login and add comments, located at the bottom of
each page.

• Provide feedback in the Web form located at:
http://www-12.lotus.com/ldd/doc/cct/nextgen.nsf/feedback?OpenForm

Conventions

Navigation

Each section includes a short navigation that points to other related topics in the section.

Prerequisites

There may be prerequisites that are important to read or perform before using a topic. This is noted in a
Prerequisites section.

Code samples

Document generated by Confluence on Apr 04, 2008 19:03 Page 8

http://www-12.lotus.com/ldd/doc/cct/nextgen.nsf/feedback?OpenForm

Code samples are shown in this format.

Copyright information

The following technologies are commonly referenced:
PHP - PHP is GNU/GPL and is maintained by the Opensource community.
ASP - Microsoft® ASP is a copyright of Microsoft corporation.
JavaScript - JavaScript™ is a copyright of Sun Microsystems.
Java - Java™ is a copyright of Sun Microsystems.

IBM copyrighted products may be referenced by using the following terms:

• Domino for IBM Lotus Domino
• Domino Designer or simply Designer for IBM Lotus Domino Designer
• Notes client or just Notes for IBM Lotus Notes client

Company example

Throughout this information, we reference a fictitious company, called Riverbend Coffee and Tea
Company, that we use to illustrate various points.

Document generated by Confluence on Apr 04, 2008 19:03 Page 9

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Riverbend+Coffee+and+Tea+Company
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Riverbend+Coffee+and+Tea+Company

Riverbend Coffee and Tea Company

This page last changed on Apr 03, 2008 by jservais.

Company overview

Riverbend Coffee and Tea Company (Riverbend) is a privately owned organization that consists of 45
world-wide locations, corporate and regional offices, store fronts, and distribution or manufacturing
plants, and in excess of 6000 employees.

The following key information illustrates the diversity of the technology and functional requirements of
the Riverbend Coffee and Tea Company:

• Riverbend has an extremely mobile sales force, who primarily work from their Blackberry mobile
devices or computers when in their home or remote offices.

• Riverbend's Customer Service is located at the corporate headquarters.
• Owner and operators of Riverbend "store front" franchises use corporate-lease technology solutions

(such as mobile computers and desktops) that securely connect to regional Riverbend offices.
• Riverbend Distribution and Manufacturing plants use kiosk and thin-client solutions to equip

employees with e-mail and collaborative business solutions.

Technology investments

Riverbend uses the following key technologies to ensure that their employees can effectively and
efficiently collaborate with each other:

• Microsoft Windows®
• IBM Lotus Notes/Domino 8.01
• IBM Sametime
• Microsoft Office 2003
• Microsoft Internet Explorer®
• Cisco Call Manager 4.2.3

Document generated by Confluence on Apr 04, 2008 19:03 Page 10

1.0 Primer

This page last changed on Mar 31, 2008 by jservais.

In this section, we review a wide range of technologies, techniques, and applied methodologies that are
critical to the Domino Web Application Developer. Consider this a simple-yet-indepth knowledge base for
those of you who are new to Domino Web Application Development, as well as a refresher for those of
you who are already seasoned pros.

As mentioned, in this section, we cover the basics, such as answering "What is HTML?", to more
advanced subject matter, such as Web 2.0. The intention of this primer to give you a fundamental
understanding of the same code and architecture that we use in our more advanced Domino Web
Development.

Topics in this section

• HTML primer
° Content type
° DOCTYPE
° Working with HTML in Domino

• Java primer
° A simple Java program
° Introduction to applets
° Introduction to classes and objects
° Working with Java in Domino Designer

• JavaScript primer
° DHTML
° The Document Object Model
° Using JavaScript with HTML
° Working with JavaScript in Domino Designer

• Styles and CSS primer
• Web 2.0 primer

° Introduction to AJAX
° Introduction to JSON

• Web services primer
• Web standards primer

° Application programming interface
• XML primer

Document generated by Confluence on Apr 04, 2008 19:03 Page 11

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+2.0+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Content+type
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+HTML+in+Domino
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Java+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/A+simple+Java+program
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+applets
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+classes+and+objects
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+Java+in+Domino+Designer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DHTML
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/The+Document+Object+Model
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+JavaScript+with+HTML
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+JavaScript+in+Domino+Designer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+2.0+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+AJAX
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+JSON
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+services+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Application+programming+interface
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/XML+primer

HTML primer

This page last changed on Apr 04, 2008 by dalandon.

• What is HTML?
• Basic HTML Web page structure
• Elements and attributes
• Basic markup
• Functional markup
• The HTML Form Element
• Working with HTML in Domino
• Additional topics

What is HTML?

What exactly is HTML? It is not a programming language, but a rather a markup language for formatting
and displaying Web documents and pages. It is the most commonly used markup language for Web
pages today.
The more we understand both the principles and applied usage of the HyperText Markup Language
(HTML) and to an extent, other markup languages such as XHTML that find their roots in HTML, the more
we can use it to deliver flexible and rich functionality to our Domino Web applications. In this section, we
review the fundamentals that, when mastered, give you the base tools to expand your Domino Web
applications beyond previously conceived limitations.

HTML is simple text markup (Content type: text/html). It consists of a combination of various objects
that Web browser clients commonly interpret based on a defined standard. These various objects consist
of elements, data types, and character and entity references. As Domino Web Developers, we leverage
these objects to render the display, facilitate the maintenance, and extend the functionality of our
Domino Web applications.

Basic HTML Web page structure

In this section, we review the basic element and standard attribute construct of HTML for Web pages. The
following example shows Web page markup.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
</head>
<body>
<p>Hello world!</p>
</body>
</html>

Document generated by Confluence on Apr 04, 2008 19:03 Page 12

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Content+type
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer

The first line in the previous example defines the DOCTYPE for this particular Web page or document. The
DOCTYPE declaration is translated by the Web browser client and defines the standard specification that
the document uses.

The <html> tag simply defines this Web page as an HTML document.

The <head> tag is used primarily to define back-end information for the document, and is not displayed
to the Web Browser client screen at run time. This is an example of a container element, which is used to
store other functional and document information such as (but not limited to) <meta>, <script>, <style>,
and <link> tags and elements.

The <body> tag is the container element used to display the visual contents of the HTML document. This
element may not only contain visual elements such as (but not limited to) <p>, <div>, , and
<object> tags and elements, but can additionally contain <script> and <style> tags and elements.

The <p> tag is a visual container element that is typically used to display text paragraphs and other such
content.

Simple XHTML Web page example

In this section, we review the basic element and standard attribute construct of XHTML for Web pages.
We immediately recognize the format, as XHTML is simply a more structured and flexible extension of
standard HTML. The following example shows simple XHTML Web page markup.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Simple XHTML Webpage Example</title>
</head>
<body>
<p>Hello world!</p>
</body>
</html>

In this example, we include the XHTML required attributes to the basic DOCTYPE and <html> tags as well
as included a <title> tag, which is used define the title of the document. In most Web browser clients,
the contents of the <title> tag is displayed as the Window Title of the given Web browser client instance.

While there are other tags and elements, understanding how these basic tags and elements both interact
with each other and render in the Web Browser client eventually gives us the ability to completely control
the visual look and dynamic function of our Domino Web applications.

Elements and attributes

In this section, we review the basic tag schema for elements and their various attributes. The following
example shows the standard tag and attribute schema.

<tagname attribute1="attributevalue1" attribute2="attributevalue2">_</tagname>_

Document generated by Confluence on Apr 04, 2008 19:03 Page 13

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/The+Document+Object+Model
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer

An end or closing tag, which is highlighted in the above example, can be optional based on the given tag
element. For example, while the <script> tag requires a end/closing tag, the <body> tag does not
require an end/closing tag. Certain markup tags explicitly require that you do not use an end/closing tag,
such as the <link> element.

See the Index of the HTML Elements from the W3C for a complete list of elements and the HTML /XHTML
Reference from W3C Schools for more detailed information.

Basic markup

In this section, we review some of the more common tags used in an HTML page.

Common tags

You will consistently use the tags that are highlighted in the following table and therefore must be
familiar with them.

HTML tag Comments

<meta /> Meta tag used in html header. Meta data is used to
describe the Web page.
<meta name="Keywords" content="description"
/>

<a> Anchor tag, used to redirect user to a different
Web page.
link text displayed on
page

<div></div> Division tag, used to define a block of HTML and
apply specific CSS or style attributes to it.
<div id="id of division">text displayed on
page</div>

 Span tag, used to define a block of HTML and
apply specific CSS or style attributes to it. Used for
inline content.
text displayed on
page

 Image tag, used to include an image or image
map on Web page.
<img src="image file name" alt="alternate text
that describes image" width="width"
height="height"/>

Formatting text

As you work with HTML, format text by using a CSS stylesheet. You can find information about CSS
markup in the Styles and CSS Primer in this guide. Some tags can be used in conjunction with CSS for
flexibility in overriding the CSS in the marking of specific text or can be used without CSS. The following

Document generated by Confluence on Apr 04, 2008 19:03 Page 14

http://www.w3.org/TR/html401/index/elements.html
http://www.w3c.org
http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/tags/default.asp
http://www.w3schools.com/
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer

table shows a subset of formatting tags that can be useful.

HTML tag Comments

 Strong tag. Used to make text bold.
text

<big></big> Big tag. Used to make size of text bigger.
<big>text</big>

<small></small> Small tag. Used to make size of text smaller.
<small>text</small>

<p></p> Paragraph tag. Used to delineate and define a
paragraph.
<p>text</p>

 Line break tag. Used to define a new line.

Creating tables

The use of tables in formatting and displaying content data is invaluable on any Web site. To create a
table, use the tags listed in the following table.

HTML tag Comments

<table></table> Table tag. Delineates the start and end of the
table.

<th></th> Table header tag. Defines the row that serves as
the the table header row.

<tr></tr> Table row tag. Defines any row that serves as a
table data row.

<td></td> Table data tag. Defines a column and the data that
goes in it.

As an example, if we were to code a two row and two column table, it might look something like the
following example.

<table>
<th> //first row, table header

<td>header for column 1</td>
<td>header for column 2</td>

</th> // end table header
<tr> // second row, table data row

<td>data for column 1</td>
<td>data for column 2</td>

</tr> // end table data row
</table>

Here is another example, with the more recent table tags.

<table>
<thead>
<tr>

Document generated by Confluence on Apr 04, 2008 19:03 Page 15

<td>header for column 1</td>
<td>header for column 2</td>

</tr>
</thead>
<tbody>
<tr>

<td>data for column 1</td>
<td>data for column 2</td>

</tr>
</tbody>
</table>

Functional markup

In this section, we provide a simple overview of HTML tags and elements that, when rendered in a Web
browser client, have built-in functionality. In the HTML Form Element section, included as part of the form
tag, we see an example of HTML functional markup: the <input>-based Submit button.

The following table shows several examples of functional markup.

Functional markup example Result when rendered in Web browser client

<input type="submit" value="Submit" /> A simple button, with a label of Submit, that
processes the user data input gathered by the
HTML Form element against the HTML Form
Element's processing agent that contains this
button.

<input type="reset" value="Clear" /> A simple button, with a label of Clear, that blanks
all field elements in the HTML Form element that
contains this button.

<input type="file" name="%%File1" /> Renders a File Upload Control element object that
allows the user to browse and select a single file
on the local system for processing.

The HTML Form Element

The HTML Form Element is a functional element, created from the combination of the <form> tag with
other elements such as (but not limited to) the <input>, <textarea>, and <select> tags. The purpose of
the HTML Form Element is to gather user input and submit that information to a data processing engine
via methods defined in the attributes of the given Form element. The following example shows a simple
HTML Form Element.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>HTML Form Element Example</title>
</head>
<body>
<form action="_processing agent_" method="_form processing method_">
<input type="text" name="test" value="" />
<input type="submit" value="Submit" />

Document generated by Confluence on Apr 04, 2008 19:03 Page 16

</form>
</body>
</html>

In the previous example, the information that is entered in the test <input> element by the user is
submitted to the HTML Form Element's processing agent - defined in the <form>'s action attribute - after
the user clicks the Submit <input> tag, which is rendered in the Web browser client as a button.

The HTML Form Element's method attribute, which has the value of "GET" or "POST", is the means to
which the data from the HTML Form Element is submitted to the <form>'s processing agent, which again
is defined in action attribute. The method attribute is often defined based on the requirements of the
particular HTML Form Element, or the capabilities of its processing agent.

Understanding the basics of the HTML Form Element is absolutely vital to the Domino Web Appplication
Developer. Mastery of the HTML Form Element allows you to extend the creation and maintenance
capabilities of data in your Domino Applications, providing your target user audience with extended
functionality that otherwise was not thought possible with Domino Web applications.

Working with HTML in Domino

Domino Designer facilitates adding HTML to your Domino Database. Working with HTML in Domino can be
easy provided that you understand the basic rules for how to incorporate HTML into your database and
understand how Domino renders HTML in a Web browser.

Additional topics

• Content type
• DOCTYPE
• Working with HTML in Domino

Document generated by Confluence on Apr 04, 2008 19:03 Page 17

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+HTML+in+Domino
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Content+type
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+HTML+in+Domino

Content type

This page last changed on Apr 03, 2008 by jservais.

The content type of an HTML page specifies to the Web browser or server the type of page or resource
that is being referenced or rendered. Also known as the MIME type, it is case insensitive and can be one
of the types listed in the following table.

Content type Description

text/html The resource is an html page

image/png The resource is a png filetype image file

image/gif The resource is a gif filetype image file

video/mpeg The resource is a mpeg filetype video file

audio/basic The resource is an audio file

text/tcl The resource is a Tool Command Language (TCL)
script text file or page

text/javascript The resource is a JavaScript text file or page

text/vbscript The resource is a Visual Basic® text file or page

text/css The resource is a CSS text file or page

For more information on content type, you can reference the World Wide Web Consortium (W3C) Web
site for current standards and definitions.

Document generated by Confluence on Apr 04, 2008 19:03 Page 18

http://www.w3.org

DOCTYPE

This page last changed on Mar 31, 2008 by jservais.

In this section, we discuss the DOCTYPE declaration for an HTML page. The <!DOCTYPE> declaration is
the first tag in your document. It comes before the <html> tag and tells the browser which HTML or
XHTML specification the document uses.

The six current specifications are highlighted in the following table.

Type, tag syntax, and explanation

HTML or XHTML Strict DTD: Used to enforce strict HTML standards and used with CSS.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|

HTML or XHTML Transitional DTD: Used when you need to use font and display formatting, when
CSS is not feasible.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

HTML or XHTML Frameset DTD: Used when your web site or Web page uses frames.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

You have some options on configuring the DOCTYPE for your Web pages in Domino, even though Domino
automatically self generates the DOCTYPE tag. See the section on working with the DOCTYPE tag in
Domino for more details.

For further information about the DOCTYPE tag, you can reference the World Wide Web Consortium
(W3C) Web site for current standards and definitions.

Document generated by Confluence on Apr 04, 2008 19:03 Page 19

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE
http://www.w3.org

Working with HTML in Domino

This page last changed on Apr 03, 2008 by jservais.

Working with HTML in Domino can be easy if you follow a few simple guidelines. Domino Designer has
four venues to allow you to add HTML to your database.

Design element type Description

Computed text You can create computed text as an option from
the Domino Create menu while you are in a page
or form. The HTML is placed as the value of the
computed text. You can also highlight the
computed text and turn it into passthru HTML
using the Domino Designer Text menu.

Passthru HTML You can type HTML directly into the page or form
as text, highlight it, and turn it into passthru HTML
using the Domino Designer Text menu.

Field formulas HTML can be the output of field formulas.

LotusScript HTML can be the output of any LotusScript®
"print" statement.

What is passthru HTML versus regular text? Passthru HTML is passed directly to the Web browser without
Domino altering any of its attributes, such as its font or style.

In addition, you should be aware of the following items before you begin:

• Domino generates its own doctype tag for each page. If you have unique requirements for your
doctype tag, you are not able to override the default. There is a certain amount of control over the
contents of the tag that is specified at the server level, but you as the developer are not able to
override it.

• Domino generates its own <html> and <head> tags. You do not need to include these in any HTML
that you place on your form.

• Domino generates its own form tag for editable forms. See adding HTML to a design for more
information on this tag.

Rendering HTML

You should be aware of the rules and order in which Domino renders HTML.

HTML element Comments

doctype First HTML tag rendered. Domino generated

<html> Second HTML tag rendered. Domino generated

<head> Third HTML tag rendered. Domino generated

Document generated by Confluence on Apr 04, 2008 19:03 Page 20

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Adding+HTML+to+a+design

HTMLHeadContent field Next piece of HTML added to the output. The
HTMLHeadContent field of the Domino form is
where you put the contents of the HTML head,
including meta tags.

<script> Next HTML tag rendered. Domino generated

JSHeader field from domino form Next piece of HTML added to the output. The
JSHeader field of the Domino form is where you
put any JavaScript for the form.

</script> Next HTML tag rendered. Domino generated

</head> Next HTML tag rendered. Domino generated

<body> Next HTML tag rendered. Domino generated. The
HTMLBodyAttributes field of a domino form allows
you to customize this tag.

<form> Next HTML tag rendered. Domino generated for
editable forms

content Your masthead, navigation, content, footer

</form> Next HTML tag rendered. Domino generated

</body> Next HTML tag rendered. Domino generated

</html> Next HTML tag rendered. Domino generated

Understanding the order in which HTML is presented to the browser can be of help in quickly locating and
diagnosing any problems that you might face when you are presented with unpredictable rendering
results.

For further information about how to code your HTML code on Domino, refer to Styling text for the Web
and adding HTML to a design.

Document generated by Confluence on Apr 04, 2008 19:03 Page 21

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styling+text+for+the+Web
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Adding+HTML+to+a+design

Java primer

This page last changed on Apr 04, 2008 by dalandon.

• What is Java?
• The Java environment
• Learning Java
• Additional topics

What is Java?

Java is a popular and highly useful programming language that was designed to be both powerful and
simple. Developed by Sun Microsystems. It is similar in style and syntax to C, C++, and C#.

Java's similarity to C ends with its syntax. Java is object oriented, and its entire concept is a change from
the traditional older programming languages such as C, Pascal, and others that are oriented towards
linear processing and design. In that respect, it is more similar to C++ and C# with its use of object
modeling.

Java is both a compiled language and an interpreted language. The developer compiles source code
(.java files) into class files (.class). When a java program is actually run, the interpreter, known as the
Java Virtual Machine (JVM™) is called to interpret the byte codes that are contained in the class file or
files and run the program.

The Java environment

What is the JVM

The Java Virtual Machine is included in all Java installations, and is required to run any Java program. The
JVM is responsible for interpreting the Java program .class file being run and executing the program.

While Java is portable, the JVM is unique to the software platform on which you are running. For
example, the JVM for Sun Solaris™ is different from the JVM for Microsoft Windows, Linux®, and Apple.
Just about all vendors provide a JVM for their operating systems, and are available for download from the
internet. A good example is Sun Microsystems, which provides JVMs for its own Solaris platform as well
as Microsoft Windows and Linux.

What is the Java Platform

The Java Platform is a set of classes that is included in every Java installation, and is available to every
Java program. These classes provide a vast amount of functionality and include the core classes of the

Document generated by Confluence on Apr 04, 2008 19:03 Page 22

http://www.sun.com/

language itself.

All Java classes, including the Java Platform, are organized into groups called packages. As an example of
the packages that are available in the Java Platform, we discuss two packages.

java.lang

The java.lang package includes the core base of the Java language. It includes the superclass called
Object that defines all basic object functionality of the language. All classes in Java are a subclass of
Object. The following classes of note are included in this package among others:

• Math - Class that provides math functionality.
• String - Class that provides functionality to manipulate strings.
• Number - Class that provides wrappers around primitive Java types.
• System - Class that provides an interface to system facilities.

• Thread - Class that provides information on a Java program thread.

java.util

The java.util package includes a set of utility classes. The classes provided in this package primarily
revolve around handling and dealing with specific data structures. The following classes of note are
included in this package among others:

• Arrays - Class that provides functionality for sorting, searching, and working with arrays.
• Collections - Class that provides functionality for working with java collections.
• Hashtable - Class that provides functionality to create and manipulate hash tables.
• LinkedList - Class that provides functionality to create and manipulate linked lists.

• Stack - Class that provides functionality to create and manipulate stacks.

These packages and classes are a small sample of what is available in the Java Platform. After you see
and work with the Java development environment, you can understand how rich and robust it is.

The Java Runtime Environment

The JVM is included in the Java Runtime Environment™ (JRE™). The JRE consists of the JVM, Java core
classes, and supporting files. It can be downloaded as an installable executable from an appropriate
vendor website. For Windows and Linux, you can refer to the Sun Microsystems Web site for the most
current installs.

One of the things to note about the JRE is that it is frequently embedded in other program installations,
including Domino. Any application that uses Java as its base language, or uses Java classes in any way,
needs to supply a JRE along with it at installation. Otherwise you must ensure that the JRE is installed
and available separately.

You can have multiple JREs on your desktop or server, each associated with a specific application, and

Document generated by Confluence on Apr 04, 2008 19:03 Page 23

each isolated from each other by both the application and operating system. One of the side effects of
this is that a given application can have a different level of the JRE/JVM than another. When you
specifically download just the JRE from the Internet, chances are you are dealing with a unique situation
in which an application or program needs it loaded separately.

The Java Development Kit

One of the applications or tools mentioned above that includes the JRE/JVM in it is the Java Development
Kit (JDK™). In addition, the JDK contains all the necessary files and tools for compiling Java programs
and creating your own packages.

The JDK is sometimes referred to as the Java Software Developer Kit (SDK). Like the JRE, the JDK for
your OS platform can be downloaded from the proper vendor's Web site.

Learning Java

This primer is intended to be a brief and high level overview of Java and its capabilities. If you are
inexperienced or are unfamiliar with Java, take the time to tour one or more of the many books or online
tutorials to expand your knowledge of the language.

Reference books

Many reference books are available on Java, both by purchase on the Internet or your local bookstore.
They vary in scope and depth, from the popular "Dummies" series, "Nutshell" series, and "Teach
yourself..." series, to the more high level college texts and professional publications. Some of these books
are available online.

• Java in a Nutshell, by David Flanagan. Publisher: O'Reilly Media, Incorporated

• Java: How to Program, by Staff of Deitel & Associates, H. M. Deitel. Publisher: Prentice Hall

• Sams Teach Yourself Java 6 in 21 Days, by Rogers Cadenhead, Laura Lemay. Publisher: Sams

• Java For Dummies, by Barry Burd. Publisher: Wiley, John & Sons, Incorporated

• Head First Java, by Kathy Sierra, Bert Bates. Publisher: O'Reilly Media, Incorporated

Java resources, Web sites and tutorials

There are also a multitude of Web sites with a wealth of information about Java, including a lot of
reference documentation on the standard Java classes and Java language itself. In addition, for the
beginner, free tutorials are available on the Internet.

Sun Microsystems' Sun Developer's Network web page should be your first resource on Java information,

Document generated by Confluence on Apr 04, 2008 19:03 Page 24

http://java.sun.com/

including downloads, and has an excellent tutorial to get you started.

Additional topics

• A simple Java program
• Introduction to applets
• Introduction to classes and objects
• Working with Java in Domino Designer

Document generated by Confluence on Apr 04, 2008 19:03 Page 25

http://java.sun.com/docs/books/tutorial/
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/A+simple+Java+program
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+applets
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+classes+and+objects
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+Java+in+Domino+Designer

A simple Java program

This page last changed on Apr 03, 2008 by jservais.

• Hello World
• Compiling and running the program
• Integrated development environment and other development environments

Hello World

The most commonly taught program when learning a new programming language is Hello World!, which
is shown in the following example.

package com.ibm.test;

import java.util.*;
import java.lang.*;

/**
Hello world program
*/
public class hello {

public String myName;

public static void main(String[] args) {
System.out.print ("Hello world!");

}
}

In the previous example, the first line of code is the package statement, which identifies the package to
which this class belongs. The package name is important because it is what you need to reference when
importing this class into another.

Next is the import statement, which is what you use to reference classes that are in another package. In
this case as an example, we have imported the Java Platform java.util package and java.lang package. In
the above code example, you do not need these two import statements, because the code base never
references any of the classes in either package. When compiling the above code, you might get a
compiler warning that the packages are not referenced.

The class statement identifies the class name within the package. It is also important to know that the
class name must match the file name of the .java file you are working in.

Within the class statement are properties and methods. The first statement marked as public is the
declaration of a property of type String, whose name is "myName:. This is included as an example only
and is not referenced in the code base either.

Next is the main program body, designated by the public "main" definition. All Java applications need a

Document generated by Confluence on Apr 04, 2008 19:03 Page 26

main function that is identified as the starting point of the application. The main statement itself has a
specific structure and syntax that must be adhered to. In this case, the main function simply prints a
statement to the designated system console.

Compiling and running the program

Now you are ready to compile. We remove all extra lines of code from the program and are left with the
six line file that is displayed in the following example image.

The Java compiler is included in the Java SDK and is javac.exe. To invoke the compiler, you simply
provide the Java source file name as its input. The JVM is manually invoked with java.exe. To run the
program, simply type the name of the class file.

You're done!

Integrated development environment and other development
environments

In the previous example, we use one of two methods of Java development. We downloaded the Java
SDK, did all of our file creation by using standard text editors such as Notepad or Wordpad, and then
manually compiled and ran the application.

The second method is the use of an integrated development environment (IDE). An IDE is a packed
program or application that, when istalled, provides an entirely encapsulated and all-in-one environment
for doing development work. It contains a front-end editor that allows you to easily edit, debug, build,
package, and sometimes even deploy your application if it contains deployment tools within it. It
frequently does not contain a JDK, as Sun releases new updates and versions of their JDK on a regular
basis. You must consult the vendor documentation and Web site prior to download to determine if you
need to also download a compatible JDK.

A detailed discussion on IDEs is beyond the scope of this primer, but we list a few IDEs here for your
consideration:

• Eclipse: An open source community dedicated to open dedicated to an open development platform,
the eclpse.org Ecipse IDE provides both a simple and easy to learn IDE.

Document generated by Confluence on Apr 04, 2008 19:03 Page 27

• Sun IDE: Sun Microsystems has its own IDE environment that is downloadable from its website.
The IDE comes packaged both wihout the JDK and bundled with a JDK.

• IBM Rational® Software Architect or Rational Application Developer: Based on Eclipse
technology, the IBM robust IDE comes with a rich environment for development of enterprise
applications.

Document generated by Confluence on Apr 04, 2008 19:03 Page 28

Introduction to applets

This page last changed on Apr 01, 2008 by jservais.

A Java applet is essentially a small non-standalone application that can be run from a web browser. Put
simply, when a user accesses and runs an applet, the Web browser downloads the applet code from a
Web page to the user's machine and then runs it. Since the applet is essentially a running program after
it is loaded, it can do everything that a standalone Java program can do if it were run from the user's
machine.

The key here is that an applet is a non-standalone application, and it is specifically run from a Web
browser.

Document generated by Confluence on Apr 04, 2008 19:03 Page 29

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements

Introduction to classes and objects

This page last changed on Apr 03, 2008 by jservais.

• The concept of an object
• Properties
• Methods
• Classes

The concept of an object

What is an object? Put simply, an object is anything that has both specific attributes that describe it, as
well as specific actions that it can perform and can have performed against it. To be more specific, we
use the traditional example of a bank account.

A bank account has specific attributes that describe it. It has a balance, for example. It also is of a
specific type, i.e, checking or savings. It also may have special aspects such as overdraft protection. All
these things, which are considered nouns, that describe the account are properties of the bank account.

What can a bank account do, and what can be done with a bank account? You can make a deposit or
withdrawal. You can do more specific things, such as make a transfer to a different account. You can set
up overdraft protection or automatic payments. All these things, which are considered verbs, that
describe what an account can do are methods of the bank account.

Properties

The properties of an object are nouns that describe it. In the case of the bank account, the following
nouns stand out:

• Account type
• Balance
• Interest rate
• Special services

These items are all necessary to manage the account. Some do not change, such as account type, while
some change on a regular basis, such as the balance of the account.

Methods

The methods of an object are actions that the object can perform, or can be performed against it. In the
case of the bank account, the following verbs stand out:

Document generated by Confluence on Apr 04, 2008 19:03 Page 30

• Deposit
• Withdraw
• Calculate interest rate

These are all actions that can be done with the account. You might notice that method collaboration and
reuse, for example, the deposit and withdraw methods, might both call the calculate interest rate method
in order to correctly calculate a final balance. The balance and interest rate properties of the account are
both accessed and updated as part of executing the deposit and withdraw method.

The important point here to remember is that everything you need to manage the object is encapsulated
within the object itself.

Classes

A class is a compiled object. All your code for a given object, including properties and methods, is placed
in a single .java file, and the class name has to match the file name of the Java file. When compiled, a
.class file is produced from the .java file.

Document generated by Confluence on Apr 04, 2008 19:03 Page 31

Working with Java in Domino Designer

This page last changed on Apr 03, 2008 by jservais.

Domino Designer is essentially an IDE. The following example shows how HelloWorld looks in Domino.

import lotus.domino.*;

public class HelloWorld extends AgentBase {

public void NotesMain() {

try {
Session session = getSession();
AgentContext agentContext = session.getAgentContext();

// (Your code goes here)
System.out.println ("Hello world!");

} catch(Exception e) {
e.printStackTrace();

}
}

}

In this example, you might notice the following items:

• Domino Designer has included an import statement to include its domino classes and object model.
These Domino classes essentially map out to equivalent classes in Lotus script.

• The default class name for a new Java agent is JavaAgent. In this case, we have changed it to
HelloWorld. After the agent is saved, it is included in the Domino Database that has HelloWorld.java,
and is suitable for export if necessary.

• The standard agent or application entry point is NotesMain
• Domino Designer inserts two lines of code to establish a Notes session to run the agent.
• A catch statement is automatically inserted to catch any errors reported to the JVM.

In the Domino Designer, our example is displayed in the agent window as shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 32

In addition to using Java in notes agents, Java can also be included in a Domino Database as a Java
Library. This give added flexibility in developing shared codes and applets.

Document generated by Confluence on Apr 04, 2008 19:03 Page 33

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Agent+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Java+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Java+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements

JavaScript primer

This page last changed on Apr 04, 2008 by dalandon.

• Prerequisites
• What is JavaScript?
• JavaScript basics
• Advanced features

Prerequisites

• HTML primer
• Styles and CSS primer

What is JavaScript?

JavaScript is a scripting language most commonly used for client-side Web development. While sharing
many of the attributes and design structures of Java, JavaScript (Content type: text/javascript) is a
completely separate language. Because JavaScript executes on the client rather than a Web server, it is
typically used to add interactivity to an HTML page such as:

• Manipulating the structure and style of the page
• Responding to actions taken by the user
• Form validation
• Site navigation schemes

As the Lotus Notes client has evolved, its support of JavaScript has increased, making it easier to create
hybrid applications that are accessible by both Notes clients and Web browsers. As an example, you can
code field validation for a Lotus Notes form using JavaScript, and it executes in both the Lotus Notes
client and a Web browser. This enables you to write a single validation routine rather than having to code
it twice, once in LotusScript or @formula language for Notes and a second time in JavaScript for Web
browsers.

JavaScript basics

The support of JavaScript in the Lotus Notes client along with its power on the Web makes it a key
component of every Lotus Notes developer's skill set. In this primer, we help you learn about key
features of the JavaScript language as they relate to Domino Web programming that will hopefully
motivate you to learn more.

Core JavaScript

Document generated by Confluence on Apr 04, 2008 19:03 Page 34

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Java+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Content+type
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/The+Document+Object+Model
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer

If you are familiar with LotusScript but have never used JavaScript, there are a few key things to keep in
mind. First, unlike LotusScript, JavaScript is case-sensitive. If you define a function with the name
validateForm() but attempt to call ValidateForm() or validateform(), you receive an error that the
function is not defined. One inadvertent error can lead to a long and frustrating debugging session.

Second, JavaScript is interpreted line-by-line as an HTML document is loaded in a browser. Consequently,
it is best to put variable declarations and functions inside the <head> tag of the page or in the JS Header
of a Notes form.

Third, JavaScript uses the semicolon to terminate statements. This allows you to put more than one
statement on a single line as shown in the following example.

<script type="text/javascript">
var userName; userName = 'Jim'; alert('My name is ' + userName);
</script>

If the elements on a single line can logically comprise a complete JavaScript statement, but the line ends
with a line break rather than a semicolon, a semicolon is implicitly inserted by the JavaScript interpreter.
However, you must explicitly end each JavaScript statement with a semicolon to make your code easier
to read and avoid confusion.

Note: JavaScript uses operators that are familiar to just about everyone with any programming
experience. However, keep in mind that JavaScript uses a single equal sign (=) for assignment
and a double equal sign (==) to test for equality.

Blocks and flow control

JavaScript uses curly braces to group statements together. For example, if more than one statement
should be executed in a function, conditional statement, or loop, the statements are grouped together
using curly braces as shown in the following example.

if (x < 10)) {
x = x + 1;
alert('x has been incremented by one');

} else {
x = 0;
alert('x has been reset to zero');

}

In addition to if/else statements, JavaScript also supports the following loops:

• while
• do/while
• for
• for/in

JavaScript functions

Like LotusScript, JavaScript allows you to create functions, which are reusable blocks of code that return

Document generated by Confluence on Apr 04, 2008 19:03 Page 35

some form of result. You define a function in JavaScript by using the function keyword, followed by a
unique name for the function, a list of parameters contained in parenthesis (the parameter list can be
empty), and finally a statement block surrounded by curly braces. The following example shows a simple
function.

function riverbendGreetings() {
alert("Welcome to River Bend Coffee!");

}

To call this function later in the script or from somewhere lower in the page, you simply use the function
name as shown in the following example.

riverbendGreetings();

Typically, you want to pass data to the function so that the data can be modified or the function can
determine a course of action to take. The data passed to the function is called a parameter or argument.
We can expand the previous example to accept a single argument called userName as shown in the
following example.

function riverbendGreetings(userName) {
if (userName == null || userName == "") {

alert("Welcome to River Bend Coffee!");
} else {

alert("Welcome to River Bend Coffee, " + userName + "!");
}

}

If the modified riverbendGreetings() function is called without passing it an argument, the function
generates the same alert as the previous example. However, if the function is passed to the parameter
"Joe," then the alert changes to incorporate the parameter value as shown in the following figures.

riverbendGreetings(); riverbendGreetings('Joe');

Just as you frequently want to pass an argument to a function, you also want to get a value back from
the function. In JavaScript, the return statement indicates the function should exit and return a value if
one has been specified. Technically, a function always returns a value, even if you don't explicitly specify
one. However, if you don't specify the value to return, the function returns a value of undefined.

Rather than generate an alert inside of the riverBendGreetings() function as we did in the previous
example, the following code returns just the text used in the alert.

function getGreeting(userName) {
if (userName == null || userName == "") {

Document generated by Confluence on Apr 04, 2008 19:03 Page 36

return "Welcome to River Bend Coffee!";
} else {

return "Welcome to River Bend Coffee, " + userName + "!";
}

}

In this instance, we're interested in the return value of the getGreeting() function. Therefore, we assign it
to the variable welcomeGreeting and pass welcomeGreeting as a parameter to the alert function as
shown in the following example.

var welcomeGreeting;
welcomeGreeting = getGreeting('Joe');
alert(welcomeGreeting);

This results in the same "Welcome to River Bend Coffee, Joe!" alert message box pictured above.
However we've gained some flexibility by using the return value of the getGreeting() function. Rather
than use the return value in an alert, we could choose to include it as text on a Web page as shown in the
following example.

var welcomeGreeting;
welcomeGreeting = getGreeting('Joe');
document.write(welcomeGreeting);

Including JavaScript on a Web page

There are a several different ways to include JavaScript on a Web page:

• The <script> tag
• Event handlers
• Linked scripts

The <script> tag

The first method of including JavaScript on a Web page is through the use of the <script> tag. You can
place the <script> tag anywhere in the body of an HTML page and the JavaScript inside is executed as
the page loads. Consider the following code for example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>JavaScript Primer</title>
</head>
<body bgcolor="#ffffff" text="#000000">

<script type="text/javascript">

document.write('Drink more coffee!');
</script>

</body>
</html>

Document generated by Confluence on Apr 04, 2008 19:03 Page 37

This code yields the following results when viewed in a browser.

Using the <script> tag to add JavaScript to a page

Event handlers

The next method of including JavaScript in a Web page is in an event handler. An event is something that
occurs in the life of a Web page such as when the page loads or a user clicks a button or hovers over a
link. Each event has a handler that allows you to determine what, if anything, happens when these
events occur.

Incorporating the getGreeting() function from the JavaScript functions section, the onClick event of a
button can be used to display the "Welcome to River Bend Coffee" alert as shown in the following
example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>JavaScript Primer</title>
<script type="text/javascript">
<!--
function getGreeting(userName) {

if (userName == null || userName == "") {
return "Welcome to River Bend Coffee!";

} else {
return "Welcome to River Bend Coffee, " + userName + "!";

}
}
//-->
</script>
</head>
<body bgcolor="#ffffff" text="#000000">
<form action="#" method="get">

Document generated by Confluence on Apr 04, 2008 19:03 Page 38

<input type="button" value="Greetings!" onclick="alert(getGreeting('Joe'));" />

</form>
</body>
</html>

Clicking the Greetings! button triggers the onClick event of the button, which in turn, causes the
associated JavaScript to execute the following output.

Using the onClick event of a button to execute JavaScript

Linked scripts

A third method of incorporating JavaScript in a Web page is through the use of linked scripts. In the
preceding code example, the getGreeting() function is defined inside the <head> tag of the HTML page.
Instead, it is possible to define the function in an external file and link to the file by specifying its location
via the src attribute of the <script> tag as shown in the following example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>JavaScript Primer</title>
<!-- link to external JavaScript file -->
<script type="text/javascript" src="scripts/riverbend.js"></script>
</script>
</head>
<body bgcolor="#ffffff" text="#000000">
...
</body>
</html>

There are several benefits of linking to external script files:

• External script files can be used across multiple Web pages.
• The script file can be updated without editing the HTML documents that link to them.
• Browsers can cache external script files.

Document generated by Confluence on Apr 04, 2008 19:03 Page 39

Consequently, you should use external script files whenever possible to improve the performance and
ease of maintenance of your Web sites.

Advanced features

Now that you understand the basics of JavaScript, the following sections describe advanced features of
the language:

• DHTML
• The Document Object Model
• Using JavaScript with HTML
• Working with JavaScript in Domino Designer

Document generated by Confluence on Apr 04, 2008 19:03 Page 40

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DHTML
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/The+Document+Object+Model
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+JavaScript+with+HTML
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+JavaScript+in+Domino+Designer

DHTML

This page last changed on Mar 31, 2008 by jservais.

Dynamic HTML (DHTML) is the combined use of HTML, CSS, and JavaScript to create dynamic Web
pages.

DHTML involves the manipulation of the HTML Document Object Model (DOM). Consequently, it's rather
important your HTML document is well formed:

• Close all container tags such as <p>, <div>, and .
• Always use a DOCTYPE definition.
• Use semantic rather than presentational HTML, i.e., use tags that describe meaning rather than

presentation such as rather than .
• Validate your HTML (the W3C has an often used validator at http://validator.w3.org).

In addition to valid HTML, ensure that you are using CSS for the presentation of your Web pages and
you're using external style sheets. HTML gives Web pages structure, CSS should be used to define how
they look.

The Dynamic portion of Dynamic HTML is supplied by JavaScript. If you're not familiar with JavaScript,
see the JavaScript primer in this wiki. You want the ability to debug your JavaScript on the off chance
there is a bug in it. If you're using Firefox, you can launch a JavaScript Console for debugging simply by
typing javascript: in the address bar:

The built-in JavaScript Console in Firefox

Document generated by Confluence on Apr 04, 2008 19:03 Page 41

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/The+Document+Object+Model
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DOCTYPE
http://validator.w3.org
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer

As you can see from the previous example, the JavaScript Console also informs you about errors in your
CSS.

Document generated by Confluence on Apr 04, 2008 19:03 Page 42

The Document Object Model

This page last changed on Mar 31, 2008 by jservais.

The Document Object Model (DOM) is intended to be a platform and language neutral interface for
accessing and updating the content, structure, and style of a document. The HTML DOM, along with
JavaScript and CSS, comprise Dynamic HTML (DHTML) and allow the dynamic update of a Web page.
Historically, each Web browser supported its own DOM implementation, which required that DHTML code
be written specifically for each browser that a site supported. The W3C published the DOM Level 3
specification in April 2004 however. It's now possible to write cross-browser DHTML code that works with
most current browsers.

As stated above, the DOM provides an interface for accessing and updating the structure of a document.
You will often hear the DOM referred to as a tree, that contains branches or nodes. The nodes are the
structural tags on the page, beginning with the <html> tag. Under the <html> node are the <head> and
<body> nodes. The <body> node contains the bulk of the DOM tree, with nodes for tags like <h1>,
<div>, and <p>.

Document generated by Confluence on Apr 04, 2008 19:03 Page 43

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DHTML
http://www.w3.org

Using JavaScript with HTML

This page last changed on Mar 31, 2008 by jservais.

JavaScript is most often used in conjunction with HTML to perform client-side data validation. However,
JavaScript also supplies the Dynamic portion of Dynamic HTML (DHTML), along with CSS and the HTML
DOM.

Field validation

JavaScript can be used to validate data entered in an HTML form before the form is submitted to the
server. Note that using JavaScript in this manner is strictly a usability enhancement of the form and
should not be considered a security mechanism.

The following figure shows a simple HTML form that contains fields for user input.

A simple HTML form with fields for user input

If the EMail Address field on the form is a required field, JavaScript can be used to ensure the user enters
a value in the field. The following code example shows the markup for the simple form shown in the
previous figure. When the form is submitted, the validate_form() function is called in the onSubmit event
of the form. The validate_form() function in turn calls the required_field() function, both of which are
defined within the <head> of the page. In this example, validate_form() is only checking to make sure
the EMail Address field is not empty. However the function could also be used to check the format of text

Document generated by Confluence on Apr 04, 2008 19:03 Page 44

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DHTML
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/The+Document+Object+Model

entered in the Email Address field, as well as the values of other fields on the form.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>River Bend Coffee</title>
<script type="text/javascript">
function required_field(field, alerttext) {

with (field) {
if (value == null || value=="") {

alert(alerttext);return false;
} else {

return true
}

}
}

function validate_form(thisform) {
with (thisform) {

if(required_field(EMail, "E-mail is a required field.") == false) {
email.focus();
return false;

}
}

}
</script>
</head>

<body>
<!-- when the form is submitted, call the validate_form() function -->
<form onsubmit="return validate_form(this)" action="#" method="post">

<p><label for="FirstName">First Name:</label> <input type="text" name="FirstName"
id="FirstName" size="20"></p>
<p><label for="LastName">Last Name:</label> <input type="text" name="LastName" id="LastName"
size="20"></p>
<p><label for="EMail">Email Address:</label> <input type="text" name="EMail" id="EMail"
size="30"></p>
<input type="submit" value="Submit">
</form>
</body>
</html>

Note that the validate_form() and required_field() functions are defined within the <head> of the page
only so that the example can be contained in a single file. In practice, it is better to define all of your
JavaScript functions in an externally linked file. See the JavaScript primer for more details on linked
scripts.

Document generated by Confluence on Apr 04, 2008 19:03 Page 45

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer

Working with JavaScript in Domino Designer

This page last changed on Mar 31, 2008 by jservais.

Including JavaScript on a Notes form or page

If you've never used JavaScript in a Lotus Notes application before, you can add it to a Notes form or
page just as you would a Web page. As long as the JavaScript you add to the form or page is supported
by the Notes client, it works just like it does in a browser.

The <script> tag

There are a several different ways to include JavaScript in a Lotus Notes form or page. One way is
through the use of the <script> tag. You can place the <script> tag anywhere on the form or page and
the JavaScript inside the tag will be executed as the page or form is loaded. In order for the JavaScript to
be used this way to properly execute in the Notes client, the following criteria must be met:

• The "Enable JavaScript" option in the Notes Client Configuration must be selected.
• The <script> tag and its contents must be marked as pass-thru HTML.
• The form that contains the <script> tag must have the "Render pass through HTML in Notes" option

selected on the form or page Properties box.

The JavaScript code contained in the example above produces a similar result in both Lotus Notes and a
Web browser as shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 46

Event handlers

Another method of including JavaScript in a Lotus Notes form or page is in an event handler. An event
occurs in the life of a Notes form or page such as when the page loads or a user clicks an action hotspot.
Each event has a handler that allows you to determine what, if anything, happens when these events
occur. Several Domino objects have JavaScript event handlers:

• Form
• Subform
• Page
• Field
• Action
• Button
• Action hotspot

If you want to execute the checkAnswer() function when leaving a field on a Web page, you add the
event handler to the markup for the field as shown in the following example:

<input type="text" id="ChargeCode" onblur="checkChargeCode();">

The same functionality can be achieved in Domino Designer by selecting the onBlur event of the field in
the Objects tab and adding the function to the script area as shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 47

Coding the onBlur event handler for a field in Domino Designer

JavaScript library

Another method of incorporating JavaScript in a Notes form or page is through the use of a JavaScript
library. The Linked Scripts section of the JavaScript primer discusses the benefits and creation of external
JavaScript files. In Domino Designer, these files are referred to as JavaScript libraries.

A JavaScript library is created in the Script Libraries area of database in the Design pane of Domino
Designer, which is the same area that LotusScript and Java libraries are created and accessed. After you
create a JavaScript library that contains the variables and functions that you want to reference in your
Notes page or form:

1. Open the form and place your cursor in the JS Header event.
2. Select Create > Resource > Insert Resource from the menu in Domino Designer.
3. In the Insert Resource dialog box, select Javascript Libraries under Resource type.
4. Select the JavaScript library that you want to include in the form and click OK.

Document generated by Confluence on Apr 04, 2008 19:03 Page 48

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer

Selecting the JavaScript library that you want to include in the form in the Insert Resource window

Document generated by Confluence on Apr 04, 2008 19:03 Page 49

Styles and CSS primer

This page last changed on Apr 04, 2008 by dalandon.

• What are styles and CSS?
• Element, ID, and class assignments
• Advanced selectors
• Using media types
• Style sheets versus inline style declarations
• Combining CSS, advanced selectors, and media types
• Content size, caching, and external style sheets

What are styles and CSS?

In an effort to separate structural markup and data from user interface design, today's Web Development
Standards suggest that we use styles and style sheets in our Web development efforts. Style sheets and
cascading style sheets (CSS) (Content type: text/css) are documents that define the visual preferences
for markup, and how such markup should be formatted when viewed via specific clients or at various
media states. These pages are written in a language commonly referred to as CSS.

To properly understand how Styles effect the visual formatting of our markup, we must first understand
how our standard non-styled markup renders in a Web browser client. For example, let us look at a
non-styled element is rendered in a Web Browser client.

<\!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
</head>
<body>
<p>Hello world!</p>
</body>
</html>

Document generated by Confluence on Apr 04, 2008 19:03 Page 50

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Content+type

A element is designed to act as an inline content container and has no inherent visual element
enhancers. With styles however, we can expand the visual element. For this example, we change the
color of the element by using the style attribute of the element.

<\!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
</head>
<body>
<p>Hello world!</p>
</body>
</html>

The utilization of inline style attributes does not truly separate data content from the visual rendering,
which is the main reason that we are looking at using styles in our development practices. Therefore, let
us expand on the element styling capabilities and review the <style> tag.

<\!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<style>
span { color: red; }
</style>
</head>
<body>
<p>Hello world!</p>
</body>
</html>

Document generated by Confluence on Apr 04, 2008 19:03 Page 51

While we can see no change in the rendered end result in the Web browser client, by adding the <style>
element to the <head> element of our example Web page, we have set that any element
content will be in the color red, thus successfully separating content from the visual user interface.

Element, ID, and class assignments

In the above example, the <style> element declaration for element styling would impact all
 elements in the Web page. In this section, we discuss how we can pinpoint the styling of
elements via element, named ID, and named class assignments.

Style selectors

A style selector is a named element, element ID, or element class that a style sheet can use in the
maintenance of specific style properties. Selectors may contain both general properties and properties
specific to their given element capabilities.

Selector Selector usage examples

Named Element span { color: red; }
div { color: blue; }
p { color: green; }

Element ID #ID1 { background-color: silver; }
#ID2 { background-color: white; }
#ID3 { background-color: black; }

Element Class .section1 { border: 1px solid red; }
.section2 { border: 1px solid blue; }
.section3 { border: 1px solid green; }

If we take these selector examples and create a simple XHTML page that leverages said examples (see
the following code example and figure), you can see how named element, element ID, and element class
selectors can be used to provide visual formatting to your markup content.

Document generated by Confluence on Apr 04, 2008 19:03 Page 52

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Style Sheet Selector Examples</title>
<style>
span { color: red; }
div { color: blue; }
p { color: green; }
#ID1 { background-color: silver; }
#ID2 { background-color: white; }
#ID3 { background-color: black; }
.section1 { border: 1px solid red; }
.section2 { border: 1px solid blue; }
.section3 { border: 1px solid green; }
</style>
</head>
<body>
<div id="ID1" class="section1">
<div>Example DIV content.</div>
Example SPAN content.
<p>Example P content.</p>
</div>
<div id="ID2" class="section2">
<div>Example DIV content.</div>
Example SPAN content.
<p>Example P content.</p>
</div>
<div id="ID3" class="section3">
<div>Example DIV content.</div>
Example SPAN content.
<p>Example P content.</p>
</div>
</body>
</html>

Document generated by Confluence on Apr 04, 2008 19:03 Page 53

Advanced selectors

The usage of style selectors can give you complete control over the visual representation of every
markup element, one you have made a conscience effort to architect our markup to best facilitate more
advanced usage of selectors. To do this, we must first understand the more advanced capabilities of
selectors.

Nested selectors

In CSS, we have the ability to create nested selectors. A nested selector is a CSS declaration that uses a
combination of named elements, element IDs, and/or element class names to traverse the markup to
affect specific target markup elements. The following simple example shows _nested selectors_, and their
impact on the target markup element.

div#content div.section p {
font-weight: normal;
margin: 0px;
padding: 0px;
color: red;
}

Document generated by Confluence on Apr 04, 2008 19:03 Page 54

The above CSS is designed to only affect the paragraph (<p>) tag element that is located in the DIV
(<div>) tag element with a Class Name of section which is located in the DIV (<div>) tag element with
an ID of content.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Nested Selector Example</title>
<style>
div#content div.section p {
font-weight: normal;
margin: 0px;
padding: 0px;
color: red;
}
</style>
</head>
<body>
<div id="header">
<div class="section">
<p>This content should not be modified.</p>
</div>
</div>
<div id="content">
<div class="section">
<p>This content should be modified.</p>
</div>
</div>
<div id="footer">
<div class="section">
<p>This content should not be modified.</p>
</div>
</div>
</body>
</html>

Without CSS style

Document generated by Confluence on Apr 04, 2008 19:03 Page 55

With applied CSS style

By using named elements, element IDs, element class names, and CSS nested selectors, developers can
both architect their solution in compliance with current Web standards primer and move toward giving
their applications Web 2.0-class functionality.

Using media types

What are CSS media types

With CSS media types, you can specify which particular style sheet to apply to your markup based on the
given access medium. The following table outlines the different media types and examples of their usage
mediums.

Media type Description

all Global/all media types and devices

aural Sound and speech synthesizers

braille Braille tactile feedback devices

embossed Braille printer media

handheld Mobile/handheld devices

print Printed medium

projection Projected media and devices

screen Computer-specific media (ie., Web browser client)

tty Designed for fixed-pitch character grid media (ie.,
teletypes and terminals)

tv Television-type devices

By understanding and properly using media types in both your markup architecture and your CSS design,
you can completely control how the content of your Web pages is displayed across any media type.

Document generated by Confluence on Apr 04, 2008 19:03 Page 56

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+2.0+primer

Using CSS media types

There are currently two ways to use CSS media types: @Import/@Media rules or the media attribute of
the <link> element.

The @Import rule

The following code showcases the proper usage schema for using CSS via the @Import rule.

@import url("example.css") screen;

The @Media rule

The following code showcases the proper usage schema for using CSS via the @Media rule.

@media screen {
body { font-size: 10pt }
}

The <link> element media attribute

The following code showcases the proper usage schema for using CSS via the media attribute of the
<link> element.

<link rel="stylesheet" type="text/css" media="screen" href="example.css">

Style sheets versus inline style declarations

As was mentioned in the What are Styles and CSS? section, utilizing an inline style declaration does not
separate the data content of a Web page from its design. This is bad for a number of reasons that are
covered in detail in the Web standards primer primer, but chief among them is the impact on
maintenance.

As a simple example, the following markup example uses inline style declarations to give an HTML table
alternating row colors. The background color of the alternating rows is specified inside, or inline, of the
HTML markup.

<table width="200" border="1">
<tr style="background-color: #CCE5FF"> <!-- inline style -->

<td>row 1 column 1</td>
<td>row 1 column 2</td>
<td>row 1 column 3</td>

</tr>
<tr>

<td>row 2 column 1</td>
<td>row 2 column 2</td>

Document generated by Confluence on Apr 04, 2008 19:03 Page 57

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer

<td>row 2 column 3</td>
</tr>
<tr style="background-color: #CCE5FF"> <!-- inline style -->

<td>row 3 column 1</td>
<td>row 3 column 2</td>
<td>row 3 column 3</td>

</tr>
<tr>

<td>row 4 column 1</td>
<td>row 4 column 2</td>
<td>row 4 column 1</td>

</tr>
<tr style="background-color: #CCE5FF"> <!-- inline style -->
<td>row 5 column 1</td>
<td>row 5 column 2</td>
<td>row 5 column 3</td>

</tr>
</table>

If the alternating row color must be changed from blue to yellow, it requires editing the page in three
places. In an example like this, such a task is easily accomplished. If this table was larger or there were
inline styles for each <td> tag that needed to be modified, the updates would become significantly more
cumbersome.

Again, as was demonstrated in the What are Styles and CSS? section, we can simplify the maintenance of
this page by assigning the alternating rows of the table a class and creating an embedded style sheet in
the head of the HTML document using the <style> tag. Inside the embedded style sheet, we can create a
selector for the class assigned to the alternate table rows and set the background-color property of the
selector to the desired color. If the color of the alternate table rows needs to be modified at some point in
the future, the change now only needs to be made inside the embedded style sheet rather than to each
table row.

...
<!-- embedded style sheet -->
<style type="text/css">

.alternateTableRow {
background-color: #FFFF99;

}

Document generated by Confluence on Apr 04, 2008 19:03 Page 58

</style>
...
<table width="200" border="1">

<tr class="alternateTableRow"> <!-- inline style replaced by class -->
<td>row 1 column 1</td>
<td>row 1 column 2</td>
<td>row 1 column 3</td>

</tr>
<tr>

<td>row 2 column 1</td>
<td>row 2 column 2</td>
<td>row 2 column 3</td>

</tr>
<tr class="alternateTableRow"> <!-- inline style replaced by class -->

<td>row 3 column 1</td>
<td>row 3 column 2</td>
<td>row 3 column 3</td>

</tr>
<tr>

<td>row 4 column 1</td>
<td>row 4 column 2</td>
<td>row 4 column 1</td>

</tr>
<tr class="alternateTableRow"> <!-- inline style replaced by class -->
<td>row 5 column 1</td>
<td>row 5 column 2</td>
<td>row 5 column 3</td>

</tr>
</table>

What if there are several pages in a Web site and each of them contains a table that should be styled
consistently? We can take this example a step further and move the embedded style sheet to an external
file. Separating HTML documents and style sheets has several benefits:

• External style sheets can be used across multiple Web pages.
• The styles can be updated without editing the HTML documents that import or link to them.
• Style sheets can be loaded based on the media type used to view the page.

Moving an embedded style sheet to an external file is as simple as cutting and pasting the content
between the <style> tags into a new text document and saving it with a .css extension. The HTML

Document generated by Confluence on Apr 04, 2008 19:03 Page 59

document can then link to the style sheet by replacing the <style> tag with a <link> tag that specifies
the path to the style sheet.

<link href="mystyle.css" rel="stylesheet" type="text/css">

By using external style sheets and semantic HTML, you can greatly simply the maintenance of your Web
pages in the following ways:

• Making HTML documents more concise and easier to read
• Consolidating all the styling and presentation of the HTML in one place for easier editing
• Allowing you to use the same style sheets across multiple HTML documents

Combining CSS, advanced selectors, and media types

In this section, we review a simple example that showcases the combination of CSS, advanced selectors,
and media types to facilitate functional web development. The following example shows the simple
non-styled Web browser client rendering example XHTML page and markup.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>CSS, Advanced Selectors, and Media Type Example</title>
</head>
<body>
<div id="maincontainer">
<div id="header" class="layoutsection">
<h1>Example Header</h1>
<ul id="menu_header">
<li class="menuitem" id="menu_header_item1"><a href="#" id="menu_header_link1"

class="active">Link 1
<li class="menuitem" id="menu_header_item2">Link

2
<li class="menuitem" id="menu_header_item3">Link

3
<li class="menuitem" id="menu_header_item4">Link

4
<li class="menuitem" id="menu_header_item5">Link

5

</div>
<div id="body" class="layoutsection">
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.</p>
<table id="bodycontent" class="content">
<thead>
<tr class="odd">
<td class="col0">Header C 1</td>
<td class="col1">Header C 2</td>
<td class="col2">Header C 3</td>
<td class="col3">Header C 4</td>
</tr>
</thead>
<tbody>
<tr class="odd">
<td class="col0">R 1 C 1</td>
<td class="col1">R 1 C 2</td>
<td class="col2">R 1 C 3</td>
<td class="col3">R 1 C 4</td>
</tr>
<tr class="even">

Document generated by Confluence on Apr 04, 2008 19:03 Page 60

<td class="col0">R 2 C 1</td>
<td class="col1">R 2 C 2</td>
<td class="col2">R 2 C 3</td>
<td class="col3">R 2 C 4</td>
</tr>
<tr class="odd">
<td class="col0">R 3 C 1</td>
<td class="col1">R 3 C 2</td>
<td class="col2">R 3 C 3</td>
<td class="col3">R 3 C 4</td>
</tr>
<tr class="even">
<td class="col0">R 4 C 1</td>
<td class="col1">R 4 C 2</td>
<td class="col2">R 4 C 3</td>
<td class="col3">R 4 C 4</td>
</tr>
</tbody>
</table>
</div>
<div id="footer" class="layoutsection">
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.</p>
</div>
</div>
</body>
</html>

We defined in the example markup explicit element IDs and element class names for all markup
elements, which can help us to specifically target grouped and individual elements for style design. For
this example, we define both a screen and print CSS media type. The intended result is a different design

Document generated by Confluence on Apr 04, 2008 19:03 Page 61

on printed materials than what a given user sees when viewing our web page via a Web browser client.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>CSS, Advanced Selectors, and Media Type Example</title>
<style>
@media screen {
body {
background-color: #999;
text-align: center;
margin: 0px;
padding: 0px;
font-size: 75%;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
}
body div#maincontainer {
background-color: #fff;
text-align: left;
margin: 0px auto;
padding: 0px;
border: 1px solid #333;
border-top: none;
width: 480px;
}
body div#maincontainer div#header {
border-bottom: 1px solid #999;
padding: 0px 0px 4px 0px;
}
body div#maincontainer div#header h1 {
margin: 0px 0px 15px 5px;
padding: 5px 0px 0px 0px;
font-size: 12pt;
color: #666;
}
body div#maincontainer div#header ul#menu_header {
list-style: none;
margin: 0px 0px 0px 5px;
padding: 0px;
}
body div#maincontainer div#header ul#menu_header li.menuitem {
display: inline;
}
body div#maincontainer div#header ul#menu_header li.menuitem a {
text-decoration: none;
color: #333;
border: 1px solid #333;
margin: 0px;
padding: 4px 10px 4px 10px;
text-align: center;
background-color: #f1f1f1;
}
body div#maincontainer div#header ul#menu_header li.menuitem a.active {
background-color: #fff;
font-weight: bold;
}
body div#maincontainer div#body p {
margin: 10px;
padding: 0px;
}
body div#maincontainer div#body table#bodycontent {
border-collapse: collapse;
border: 1px solid #cfcfcf;
margin: 5px 5px 15px 5px;
width: auto;
}
body div#maincontainer div#body table#bodycontent thead tr td {
background-color: infobackground;
border-bottom: 1px solid #cfcfcf;
border-right: 1px solid #cfcfcf;
text-align: center;
font-size: 9pt;
font-weight: bold;
padding: 4px;

Document generated by Confluence on Apr 04, 2008 19:03 Page 62

}
body div#maincontainer div#body table#bodycontent tr.even td {
background-color: #f1f1f1;
}
body div#maincontainer div#body table#bodycontent tbody tr td {
font-size: 8pt;
}
body div#maincontainer div#body table#bodycontent td.col0 {
width: 125px;
}
body div#maincontainer div#body table#bodycontent td.col1 {
width: 85px;
}
body div#maincontainer div#body table#bodycontent td.col2 {
width: 125px;
}
body div#maincontainer div#body table#bodycontent td.col3 {
width: 95px;
}
body div#maincontainer div#body table#bodycontent tbody tr td.col1 {
color: red;
text-align: center;
}
body div#maincontainer div#body table#bodycontent tbody tr td.col2 {
color: blue;
font-weight: bold;
text-align: center;
}
body div#maincontainer div#body table#bodycontent tbody tr td.col3 {
color: green;
text-align: right;
}
body div#maincontainer div#footer {
border-top: 1px solid #666;
}
body div#maincontainer div#footer p {
text-align: center;
margin: 5px;
padding: 0px;
font-size: 7pt;
color: #666;
}
}
@media print {
body {
font-family: "Courier New", Courier, monospace;
font-size: 1em;
}
body div#maincontainer div#header h1 {
font-size: 12pt;
}
body div#maincontainer div#header ul {
display: none;
}
body div#maincontainer div#body p {
font-size: 9pt;
}
body div#maincontainer div#body table#bodycontent thead tr td {
font-size: 11pt;
font-weight: bold;
}
body div#maincontainer div#body table#bodycontent {
border-collapse: collapse;
font-size: 9pt;
border: 1px solid #999;
width: 100%;
}
body div#maincontainer div#body table#bodycontent tr td {
border: 1px solid #999;
border-right: none;
border-left: none;
}
body div#maincontainer div#footer p {
color: red;
font-size: 8pt;
text-align: center;
}
}

Document generated by Confluence on Apr 04, 2008 19:03 Page 63

</style>
</head>
<body>
<div id="maincontainer">
<div id="header" class="layoutsection">
<h1>Example Header</h1>
<ul id="menu_header">
<li class="menuitem" id="menu_header_item1"><a href="#" id="menu_header_link1"

class="active">Link 1
<li class="menuitem" id="menu_header_item2">Link

2
<li class="menuitem" id="menu_header_item3">Link

3
<li class="menuitem" id="menu_header_item4">Link

4
<li class="menuitem" id="menu_header_item5">Link

5

</div>
<div id="body" class="layoutsection">
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.</p>
<table id="bodycontent" class="content">
<thead>
<tr class="odd">
<td class="col0">Header C 1</td>
<td class="col1">Header C 2</td>
<td class="col2">Header C 3</td>
<td class="col3">Header C 4</td>
</tr>
</thead>
<tbody>
<tr class="odd">
<td class="col0">R 1 C 1</td>
<td class="col1">R 1 C 2</td>
<td class="col2">R 1 C 3</td>
<td class="col3">R 1 C 4</td>
</tr>
<tr class="even">
<td class="col0">R 2 C 1</td>
<td class="col1">R 2 C 2</td>
<td class="col2">R 2 C 3</td>
<td class="col3">R 2 C 4</td>
</tr>
<tr class="odd">
<td class="col0">R 3 C 1</td>
<td class="col1">R 3 C 2</td>
<td class="col2">R 3 C 3</td>
<td class="col3">R 3 C 4</td>
</tr>
<tr class="even">
<td class="col0">R 4 C 1</td>
<td class="col1">R 4 C 2</td>
<td class="col2">R 4 C 3</td>
<td class="col3">R 4 C 4</td>
</tr>
</tbody>
</table>
</div>
<div id="footer" class="layoutsection">
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.</p>
</div>
</div>
</body>
</html>

Document generated by Confluence on Apr 04, 2008 19:03 Page 64

Web browser client

Document generated by Confluence on Apr 04, 2008 19:03 Page 65

Print preview

Content size, caching, and external style sheets

As you can see in the previous examples, styling your markup elements via the in-markup <style> tag
element can add more markup to the given Web page. With more markup on our Web pages, we are
unnecessarily adding to the content size of the Web page, and not allowing both the HTTP server and the
Web browser client to cache common style declarations.

To create a lighter markup and allow both the HTTP server and Web browser client to cache any common
styles declarations, we can take all of the CSS markup and create two separate style sheets named
screen.css and print.css. We then modify all of our Web pages that need these common style
declarations, by using the <link> element method.

In the following table, we show a simple comparison of the above example (which uses the in-markup
<style> tag element) and a second example Web page that uses the <link> tag element method, which
charts the content size and the ratio of markup-to-displayed content (text).

Web page/markup
example

Total page size Text content Content percentage

In-markup <style> 6002 Bytes 387 Bytes 6.45%

External Style Sheets 2455 Bytes 387 Bytes 15.76%

As we can see, the usage of external style sheets reduces the Total Page size by more than 50%. Despite
this being a simple example, we can immediately see the benefits of using external style sheets in our
development archtecture. Decreasing total page size metrics across our applications allow for not only
better resource utilization and response times, but also can facilitate the expanse of said applications to
low-bandwidth device types, such as mobile device clients.

Another benefit to this approach is the single-point-of-maintenance that this approach affords us when a
need to modify the common style declarations across multi-Web page environments.

Document generated by Confluence on Apr 04, 2008 19:03 Page 66

Web 2.0 primer

This page last changed on Apr 04, 2008 by dalandon.

• Prerequisites
• What is Web 2.0?
• Public or community applications of Web 2.0

Prerequisites

• HTML primer
• JavaScript primer
• XML primer
• Web services primer
• Web standards primer

What is Web 2.0?

Web 2.0 is a global community initiative to make thin-client application environments more rich,
user-friendly and interactive, resulting in the creation of a Web 2.0 Standard and an abandoning of the
more archaic Web development practices and conceptions. Instead, Web developers adhering to said Web
2.0 Standards are combining Dynamic HTML (DHTML), XML data streams, and new functional architecture
methodologies to provide their application user community with more intuitive and fluid user interfaces
while maintaining Web development standards, as well as providing the same community with
collaborative tools that allow meta-communication and meta-presence.

In this section we discuss the various methodologies and technologies used to achieve what the global
community has named Web 2.0, as well as review best practices examples of Web 2.0 applications.

Public or community applications of Web 2.0

Google has, for example, been a pioneer in the Web 2.0 initiative, providing the global user community
with fluid rich browser applications that allow said community to collaborate via services ranging from
business productivity suites, e-mail, instant messaging, blogging, and personal portal solutions. Each of
these services uses technologies and methodologies that are now synonymous with Web 2.0, including
REST, SOAP, and AJAX.

Other technology vendors, such as Microsoft, Yahoo, and IBM have also provided Web 2.0 services to the
global user community. A perfect example of such a Web 2.0 service is the Best Practices for Building
Domino 8 Web Applications wiki that are using here. This and other vendor and community Web 2.0
services allow the community to interact and collaborate in new ways.

Applied Web 2.0 technologies and methodologies can expand current and be used to renew existing

Document generated by Confluence on Apr 04, 2008 19:03 Page 67

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/XML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+services+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www.google.com
http://www.microsoft.com
http://www.yahoo.com
http://www.ibm.com

application development initiatives in order to meet user community expectations.

• Introduction to AJAX
• Introduction to JSON

Document generated by Confluence on Apr 04, 2008 19:03 Page 68

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+AJAX
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+JSON

Introduction to AJAX

This page last changed on Apr 02, 2008 by jservais.

AJAX is term used to describe a group of technologies for developing interactive Web applications.
Historically, Web applications have functioned in the following manner:

• A Web browser requests an entire page from a Web server.
• A user clicks a link or submits a form, causing the browser to send a new request to the server.
• The Web server responds by sending another complete page to the browser.

By using AJAX, when a user triggers an event on a page, the browser sends a request to the Web server.
Rather than load a completely new page, the currently loaded page is updated with new information. This
results in a much smoother experience for the user, more like that of traditional desktop applications than
the page-based model of the Web.

Document generated by Confluence on Apr 04, 2008 19:03 Page 69

Introduction to JSON

This page last changed on Apr 04, 2008 by dalandon.

• What is JSON?
• JSON structure
• JSON data types
• Using the JSON object
• Security and the JSON parser

What is JSON?

JavaScript Object Notation (JSON) is a lightweight data-interchange format that is used to communicate
between a browser and a server. It has become popular because it is easy for humans and computers to
read and write. It does not depend on any one programming language. Therefore, you can use your
favorite languages to work with it. While the format is readable, you can make objects that are very
complicated to understand. JSON is a native data format for JavaScript code. Therefore, there is no need
to parse it in the browser. The data is readily accessible as objects in your JavaScript code. Retrieving
values is as easy as reading from an object property in your JavaScript code.

JSON has the following drawbacks:

• You must know the JSON structure because there isn't a data definition file.
• You cannot t easily navigate or convert the data as you can with XML.

The following code sample shows an example of JSON.

{"addressbook": {
"name": "Bruce Lill",
"address": {

"street":"402 Main Street",
"city":"Lees Summit, MO",
"zip":"9999"
},

"phoneNumbers": [
"816 555 4444", "816 555 5555"
]

}
}

JSON structure

JSON can be either an Object or an Array. The Object is an unordered set of name/value pairs, while the
Array is an ordered set of entries. The Object begins with { and end with } and contains name/value
pares are written as name followed by : and the value. If there are multiple name/value pares, then they
are separated with a , as shown in the following example.

Document generated by Confluence on Apr 04, 2008 19:03 Page 70

{"name":"value" , "pet":"Binx"}

An Array begins with [and ends with] and contains values separated with a , as shown in the following
example.

[Value , 1,false,"Lotus",[2, 3],{"count":23}]

A value can be a valid JSON data type.

JSON data types

Type Sample object

Boolean "active":true

String "address": "402 3rd Street"

Positive integers "quantity": 91

Negative integers "rating": -123

Floats "length":122.2344

Scientific notation "atoms per mole":-6.023e+23

Null "email":null

array [value, value, value]

Object "objname":"objvalue" , "pet":"Binx"

Methods theMethodName

String information: In JSON, strings must be delimited by the double quotation mark
characters. For a list of characters that are allowed and those that must be escaped, refer to the
JSON Web site.

Using the JSON object

After you have a JSON object, you can use dot notation or array notation to access its properties.

The following example shows how to use the dot notation.

var cusname = JSONdata.cusname;
var homephone = JSONdata.homephone[0];
JSONdata.Method()

The following example shows how to use an array notation.

Document generated by Confluence on Apr 04, 2008 19:03 Page 71

http://www.json.org/

var cusname = JSONdata["cusname"];
var homephone = JSONdata["homephone"][0];
JSONdata["Method()"]

JSON data is received as a string, usually from an XMLHttpRequest to a server. The server has a URL that
returns the request as a string in text or JSON content type. For debugging, you can return plain text so
you can see it in the browser. When you set the content type to application/json, you are requested to
open or save the file when it is returned from the server.

The LotusScript example is for setting the content type.

Print |Content-type: application/json|
OR
Print |Content-type: text/plain|

To convert the results from the XMLHttpRequest into an JavaScript object, use the JavaScript eval()
function. The eval() function invokes the JavaScript compiler to convert the string into a Javascript
object. Since JSON is a proper subset of JavaScript, the compiler correctly parses the text and produces
an object structure.

var JSONtext = xmlhttpreq.responseText;
var data = eval("(" + JSONtext + ")");
var top = parseInt(data["@toplevelentries"]);

Security and the JSON parser

The Javascript eval() can compile and execute any JavaScript program, so there can be security issues
(cross-site scripting) when using it with a site on the Internet. When security is a concern, then use a
JSON parser instead of eval(). The JSON parser only recognizes JSON text and is much safer.

var JSONdata = JSON.parse(txt);

If you use a library such as Dojo, then use its JSON parser for security. When you use a JSON parser,
remember that it expects all object names to be text with double-quotation mark delimitation.

Document generated by Confluence on Apr 04, 2008 19:03 Page 72

http://www.dojotoolkit.org/

Web services primer

This page last changed on Apr 04, 2008 by dalandon.

• Prerequisites
• What are Web services?
• Examples of commonly used or public Web services
• XML and Web services
• What is SOAP?
• What is WSDL?
• What is UDDI?

Prerequisites

• HTML primer
• XML primer

What are Web services?

Web services are functional predefined, self-contained applications that are available from a Web server.
Another application can contact and call the Web service application remotely and receive data in return.
A simple example might be a Web server that provides weather information. Another application,
regardless of whether it is Web based, can call the Web service with a ZIP code and receive current
weather conditions in return.

Web services provide a conduit from an application or application environment to another application or
application environment via standard formats and protocols such as XML, SOAP, WSDL, and UDDI. More
and more technologies are supporting Web services as today's enterprise-level business solutions require
interoperability between technology solutions.

In this section, we review both the basics of Web services as well as further explore the standards-based
formats and protocols that Web services employ to seamlessly integrate otherwise often non-integrated
solutions.

Examples of commonly used or public Web services

Some of the most popular and commonly used examples of Web services come from Google, which
provides the global community with many various Web Service-based solutions. One of the most popular
is Google Maps.

The example markup illustrates a simple usage scenario of the Google Maps Web Service. In this
example, the onload event of the <body> element triggers a simple JavaScript function (defined in the
<header> element above), which makes a Web services call via the predefined Google Maps API. Data is

Document generated by Confluence on Apr 04, 2008 19:03 Page 73

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/XML+primer
http://www.google.com
http://code.google.com/apis/maps/
http://code.google.com/apis/maps/documentation/examples/map-simple.html

then exchanged between the Google Maps Web Service and our example Web page, rendering a local
area map result.

Understanding public Web services enables us to eventually architect and develop our own Web services,
allowing us to integrate global community solutions and other thir-party technologies and solutions. For
the most part, the only thing that is required for learning about and from these public Web services is an
eagerness to learn! Most of the public Web services are free (although some may require registration),
and the global community does an impressive job maintaining FAQs and tutorials which often showcase
general usage examples which can be extremely helpful.

XML and Web services

XML is the basis for Web services, which uses the flexibility and definable structure of the markup
language to facilitate the communication between the source and target solutions. Web services often
leverage XML, XSL, and XSLT to both consume and return data result sets.

What is SOAP?

SOAP (Content Type: text/xml or application/xml) is a common and standard protocol that allows XML
data to be communicated from a source to a target technology. The basic syntax of a SOAP message is
made up of the elements listed in the following table.

Element name or type Usage or example

<envelope> This element identifies the XML document as a
SOAP message.

<header> This element contains header information
regarding the specific SOAP message.

<body> This element contains the SOAP message call and
response data.

<fault> (Optional) This element contains processing error
data for the SOAP message.

The following example shows the basic structure of a SOAP message.

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>
</soap:Header>
<soap:Body>

<soap:Fault>
</soap:Fault>

</soap:Body>
</soap:Envelope>

What is WSDL?

Web Services Description Language (WSDL) is a common and standard XML-formatted language that is

Document generated by Confluence on Apr 04, 2008 19:03 Page 74

used for source and target technology interface. The basic syntax of a WSDL document is made up of the
elements listed in the following table.

Element name or type Usage or example

<definitions> This element indentifies the XML document as a
WSDL document.

<porttype> This element identifies the operations performed
by the Web Service.

<message> This element identifies the message content used
by the Web Service.

<types> This element defines the Content/Data Types used
by the Web Service.

<binding> This element defines the protocols used by the
Web Service.

The following example shows the basic structure of a WSDL document.

<wsdl:definitions name="nmtoken"? targetNamespace="uri">
<import namespace="uri" location="uri"/> *

<wsdl:documentation /> ?
<wsdl:types> ?

<wsdl:documentation /> ?
<xsd:schema /> *

</wsdl:types>

<wsdl:message name="ncname"> *
<wsdl:documentation /> ?
<part name="ncname" element="qname"? type="qname"?/> *

</wsdl:message>

<wsdl:portType name="ncname"> *
<wsdl:documentation /> ?
<wsdl:operation name="ncname"> *

<wsdl:documentation /> ?
<wsdl:input message="qname"> ?

<wsdl:documentation /> ?
</wsdl:input>
<wsdl:output message="qname"> ?

<wsdl:documentation /> ?
</wsdl:output>
<wsdl:fault name="ncname" message="qname"> *

<wsdl:documentation /> ?
</wsdl:fault>

</wsdl:operation>
</wsdl:portType>

<wsdl:serviceType name="ncname"> *
<wsdl:portType name="qname"/> +

</wsdl:serviceType>

<wsdl:binding name="ncname" type="qname"> *
<wsdl:documentation /> ?
<-- binding details --> *
<wsdl:operation name="ncname"> *

<wsdl:documentation /> ?
<-- binding details --> *
<wsdl:input> ?

<wsdl:documentation /> ?
<-- binding details -->

</wsdl:input>
<wsdl:output> ?

<wsdl:documentation /> ?
<-- binding details --> *

Document generated by Confluence on Apr 04, 2008 19:03 Page 75

http://www.w3schools.com/wsdl/wsdl_syntax.asp

</wsdl:output>
<wsdl:fault name="ncname"> *

<wsdl:documentation /> ?
<-- binding details --> *

</wsdl:fault>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name="ncname" serviceType="qname"> *
<wsdl:documentation /> ?
<wsdl:port name="ncname" binding="qname"> *

<wsdl:documentation /> ?
<-- address details -->

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

What is UDDI?

Universal Description, Discovery, and Integration (UDDI) is an XML-based directory of Web services
described by WSDL. Businesses and organizations can register their WSDL-based Web services in the
UDDI to allow their Web services to participate in the global community and to facilitate our development
to their specific WSDL standard.

UDDI business registration consists of the types that are listed in the following table.

UDDI type Examples

White Pages Address, contact, and known identifiers

Yellow Pages Industrial categorizations based on standard
taxonomies

Green Pages Technical information about services exposed by
the business

For more information on UDDI, visit the UDDI Home Page!

Document generated by Confluence on Apr 04, 2008 19:03 Page 76

http://uddi.xml.org/

Web standards primer

This page last changed on Apr 04, 2008 by dalandon.

• What are Web standards?
• Technical standards
• Best practices
• Accessibility
• Additional topics

What are Web standards?

The term Web standards has generally come to refer to the initiative by the World Wide Web Consortium
(W3C) and other groups to promote a common set of technical standards and best practices for Web
development. The intent is to provide the greatest number of Web users with usable, accessible content
in a manner that simplifies the development, maintenance and longevity of Web pages as new browsers
are released and updated.

Historically, the problem has been the release of browsers that incorrectly or do not fully support W3C
standards. This has given developers and designers a set of unpleasant choices:

• Create simple pages that use the lowest common subset of standards supported across most
browsers.

• Create pages with extraneous markup and code so the page renders as intended across most
browsers.

• Create pages for a specific browser or subset of browsers.

In turn, these choices have the following results:

• Pages that lack visual appeal and have limited functionality
• Pages bloated with layers of markup and code that are slower to download and difficult to maintain
• Pages branded with a "best viewed in" caveat (which either advertises the developer's indifference

to users with alternate browsers or limited Web development skills)

Unfortunately, users are impacted most by these issues, particularly those users with special needs or
disabilities.

Technical standards

The technical specifications that comprise Web standards include, but are not limited to, the following:

• World Wide Web Consortium (W3C) recommendations:
° HTML 4.0.1
° XHTML 1.0

Document generated by Confluence on Apr 04, 2008 19:03 Page 77

http://www.w3.org
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/xhtml1

° XHTML 1.1
° CSS Level 1
° CSS Level 2
° CSS Level 3
° DOM Level 1
° DOM Level 2
° DOM Level 3

• European Computer Manufacturers Association (ECMA) Standards:
° ECMAScript (standardized JavaScript)

As you can see by the version numbers on the list above, technical standards are continuously evolving.
A Web page doesn't have to to use the latest specifications to be considered "standards compliant." It's
also possible to create a Web page that is technically correct according to the specifications, but that
violates most if not all Web design best practices.

Best practices

Just as important as the technical aspect of Web Standards are the best practices.

• Separate content from presentation
• Use a valid DOCTYPE
• Validate your documents

Separate content from presentation

Chief among the Web design practices is the separation the HTML/XHTML markup of the page from the
presentation. The presentation consists of the fonts, colors, page layout, etc., and should be set with an
external CSS style sheet. This best practice include the following examples among others:

• Use of the <div> tag and CSS instead of tables to layout the design of the page
• Use of the <p> tag instead of
 to create paragraphs
• Use of the tag instead of to make text standout
• Use of the tag instead of <i> to emphasize text
• Use of heading tags (h1, h2, h3, etc.) to designate headings within the document

Why is separating the content from the presentation of a page and using semantic (descriptive) markup a
best practice? Web sites that are built this way are much easier to maintain. If the marketing department
decides that green is the new black and wants you to update the Web site accordingly, it is much easier
to modify an external CSS file than search through all the pages that comprise the site for every
tag and change the associated color attribute. An excellent real world example of the power of CSS-based
designs is the Web site CSS Zen Garden. Each page of the site uses the same HTML file but achieves a
radically different look and feel by referencing a different external CSS file.

Pages that use semantic markup and a CSS-based layout rather than a table-based layout also perform
better. Semantic HTML files and their associated style sheet(s) are typically smaller and download faster
than HTML files that also contain presentation markup.

Finally, pages that use semantic markup are also easier for machines and developers to read. If the
heading of a page is marked up as shown in the following example, the meaning of the markup isn't as

Document generated by Confluence on Apr 04, 2008 19:03 Page 78

http://www.w3.org/TR/xhtml11
http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.ecma-international.org
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www.csszengarden.com

clear to a developer who is examining the page as the simple use of an <h1> tag would be.

Welcome to River
Bend Coffee!

It's also not as clear to search engines or screen readers.

Use a valid DOCTYPE

Another Web Standards best practice is to use a proper document type declaration (DOCTYPE) on your
pages. The DOCTYPE is important for a couple of reasons. First, your page won't validate without one.
Second, the DOCTYPE tells the Web browser how to render your Web page. Web browsers, with the
exception of Opera, have two modes for rendering pages, standards mode and quirks mode. A missing,
incomplete, or malformed DOCTYPE causes a Web browser to display a page in quirks mode. A complete,
properly formed DOCTYPE triggers standards mode in a browser.

In standards mode, a browser renders a Web page as you designed it, in a standards compliant fashion
(more or less). In quirks mode, the Web browser assumes that a Web page is not standards compliant
and renders the page as it would have appeared in legacy browsers, before standards specifications
existed and were widely adopted. Consequently, you can be less sure of how the browser will display your
page when in quirks mode.

The HTML primer of this wiki details proper document type declarations and how to set them in Domino.

Validate your documents

You should always validate your HTML, XHTML, and CSS files. Validation tests markup and CSS
documents against the corresponding technical specification for proper implementation and usage.
Validation is often a useful method of locating potential issues and ensuring your Web pages will display
properly in future browsers.

The W3C provides a HTML/XHTML validation service at http://validator.w3.org and a CSS validation
service at http://jigsaw.w3.org/css-validator.

Accessibility

A key component of Web standards is accessibility, which ensures that people with visual, auditory, and
physical disabilities can navigate and interact with content on the Web. In 1999, the Web Accessibility
Initiative (WAI) of the W3C published the Web Content Accessibility Guidelines 1.0 (WCAG 1.0) to provide
designers and developers with guidelines on making Web sites accessible.

In 2001, the W3C published the first draft of WCAG 2.0, although it's still in draft form. There has been
some criticism of WCAG 2.0, including the length of time it has taken to develop the document.
Consequently, a group of developers known as the WCAG Samurai published a set of errata for WCAG 1.0
for use as an alternative to WCAG 2.0.

Document generated by Confluence on Apr 04, 2008 19:03 Page 79

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://validator.w3.org
http://jigsaw.w3.org/css-validator
http://www.w3.org/WAI
http://www.w3.org/WAI
http://www.w3.org/TR/WAI-WEBCONTENT
http://www.w3.org/TR/WCAG20
http://wcagsamurai.org

Despite the debate regarding WCAG 2.0, much of WCAG 1.0 is considered to be the definitive source for
accessibility guidelines. The following is a small subset of the guidelines in WCAG 1.0:

• Use the alt attribute of the tag to provide a text description of the image
• Do not rely solely on color to convey information (e.g., hyper links should be underlined or somehow

visually indicated other than use of an alternate color)
• Do not use tables for layout
• Ensure that background and foreground colors have sufficient contrast
• Use the <label> tag for form controls

It is important to be aware of these guidelines for several reasons. The first and obvious reason is so that
Web sites you create are accessible to everyone who wants or needs to access them. The second reason
is that there is increasingly a legal obligation to make Web sites accessible. A blind man in Australia
successfully sued the Sydney Organization Committee of the Olympic Games in 2000, because the
Sydney Olympic Games Web site wasn't adequately usable by blind people. In the United States in 2006,
a blind student at UC Berkeley filed suit against the retail chain Target because its Web site was not
accessible to blind users. In October 2007, the lawsuit became a nationwide class action.

The third reason to be aware of these guidelines is so that you can identify what steps you need to take
to make a Domino-based Web site accessible. For example, WCAG 1.0 specifies the use of a <label> tag
for form controls. The correct markup for an input field called FirstName with an associated label looks
like the following example.

<label for="FirstName">First Name:
<input type="text" id="FirstName" tabindex="1">

</label>

However, most Lotus Notes and Domino developers are used to creating fields and labels like those
shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 80

The following HTML is created by Domino 8.0.1 for the field on the form above.

First Name: <input name="FirstName" value="">

As you can see, the markup does not meet the WCAG 1.0 guidelines. Additionally, most Notes developers
use tables to layout the design of a form, placing the field label text in one column and the field in the
next. This is fine when developing for Notes clients, but if not adapted for the Web, also violates WCAG
1.0.

If you are new to designing for accessibility, Mark Pilgrim has an excellent guide to making Web sites
more accessible at http://www.diveintoaccessibility.org .

Useful links: You can learn more about Web standards by visiting the following sites:

• Web Standards Group
• The Web Standards Project

Additional topics

• Application programming interface

Document generated by Confluence on Apr 04, 2008 19:03 Page 81

http://www.diveintoaccessibility.org
http://webstandardsgroup.org
http://www.webstandards.org
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Application+programming+interface

Application programming interface

This page last changed on Apr 04, 2008 by dalandon.

• What is an API?
• Examples of commonly used or public APIs

What is an API?

An application programming interface (API) is a predefined collection of procedure calls that trigger
specific functions in an effort to evaluate or return resultant data or functionality. Essentially, an API is
the communication language to a specific technology.

Examples of commonly used or public APIs

Add your examples here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 82

XML primer

This page last changed on Mar 31, 2008 by jservais.

• Prerequisites
• What is XML
• Examples of XML
• Styling XML

Prerequisites

• HTML primer

What is XML

Extensible Markup Language (XML) is an open standard metalanguage that developers can use to create
and structure data elements. Unlike HTML, XML (Content Type: text/xml or application/xml) does not
have a predefined structure of elements, but rather provides the individual developer or development
community with the ability to create their own shared structure schema via a document type definition or
DTD.

A subset of SGML, XML was developed by the W3C to facilitate the rendering of and cross-environment
reading of data elements. The use of XML allows the global community to establish client usage standards
for specific data types.

A common example of a globally-adopted standard is the XML-based RSS 2.0, or Really Simple
Syndication, that we see on today's news and blogging Web sites. While the contents of each RSS feed
may vary, developers that adhere to the global community standard for the structure of XML-based RSS
can ensure that RSS Reader clients will properly read and display their content.

Examples of XML

In the following example, the <note> is an object that contains the elements <to>, <from>, <heading>,
and <body>.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<note>
<to>John</to>
<to>Lisa</to>
<from>Chris</from>
<heading>Riverbend Project Meeting</heading>
<body>Quick meeting to discuss and define the scope of the project.</body>
</note>

Document generated by Confluence on Apr 04, 2008 19:03 Page 83

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer

Styling XML

XML is a markup language that is used to structure, and not visually style, document data. As we can see
in the following figure, our XML displays a simple document treewhen viewed via a Web browser client.
We can style this XML using several globally-supported methods, which we discuss in the following
sections.

Styling XML with CSS

CSS can be used to modify markup to provide a visual interface with document data, and XML-based
markup is ultimately no different. We can use CSS element declarations to enhance and visually structure
of our XML by defining an external style sheet in our XML markup, as shown in the following example:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<?xml-stylesheet href="example.css" type="text/css"?>

<note>
<to>John</to>
<to>Lisa</to>
<from>Chris</from>
<heading>Riverbend Project Meeting</heading>
<body>Quick meeting to discuss and define the scope of the project.</body>
</note>

By adding the <xml-stylesheet> element, we have defined an external style sheet (example.css) that we
can use to maintain the visual rendering of the XML markup as shown in the following example:

* {
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size: 85%;

Document generated by Confluence on Apr 04, 2008 19:03 Page 84

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer

}
note, to, from, heading, body {

display: block;
background-repeat: no-repeat;
background-position: left center;

}
note {

border: 1px dashed #666;
width: 300px;
margin: 5px;
padding: 5px;

}
to {

color: blue;
background-image: url(to.jpg);
padding-left: 75px;

}
from {

color: Gray;
background-image: url(from.jpg);
padding-left: 75px;

}
heading {

font-weight: bold;
font-size: 9pt;
background-image: url(heading.jpg);
padding-left: 75px;

}
body {

font-size: 8pt;
border-top: 1px solid #cfcfcf;
margin: 5px;
padding: 5px;
text-align: justify;

}

Each named element in the style sheet controls the visual rendering of its XML markup element
counterpart (ie., heading controls the <heading> markup element, etc.). When the above CSS is applied
to the XML markup example, we are given a drastically different visual representation of the XML data as
shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 85

The media type linked CSS attribute can be utilized to better control the visual rendering of XML markup,
allowing us to specify different external style sheets for printing, Web browser clients, and handheld or
mobile devices.

While the utilization of CSS to control the visual rendering of XML allows us to greatly enhance the
presentation of our XML data, it requires that we take the XML markup as-is. For example, in order to
allow for element labels in the above example while maintaining current browser and Web development
standards, we were required to use a combination of label images and static element padding.

There is another option that facilitates both an enhancement to the visual rendering of our XML markup
while allowing us to conditionally transform our markup at run time without requiring that we modify the
actual XML data elements.

Styling XML with XSL, XSL-FO and XSLT

What is XSL

Extensible Stylesheet Language (XSL) (Content Type: text/xsl or application/xsl) is essentially an XML
document that defines the presentation structure of an XML data document. The original XML data
document uses the XSL document to transform its markup into other formats (such as HTML, XHTML,
etc.). XSL was the original proposal to facilitate XML data document formatting, but has since depreciated
in favor of XSL-FO and XSLT, which is the current global community standard.

What is XSL-FO and XSLT

XSL Formatting Object (XSL-FO) and XSL Transformation (XSLT) documents (Content Type: text/xsl or
application/xsl) allows us to transform, based on a defined template logic, our XML data documents to
other formats such as XHTML, SVG, and other standard-based markup languages and formats. XSL-FO
and XSLT also allow us to walk the data - extracting XML data elements and sub-elements in a manner
and method similar to HTML's DOM.

The following example shows a simple XSLT document for the example XML data document from the
previous sections:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>XML Note to XHTML Example</title>
<style>

body {
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
background-color: #fff;

}
body div.note {

background-color: infobackground;
width: 450px;
border: 1px dashed #666;
margin: 15px;
padding: 0px;

Document generated by Confluence on Apr 04, 2008 19:03 Page 86

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/The+Document+Object+Model

font-size: 8pt;
}
body div.note label {

float: left;
display: block;
width: 70px;
font-size: 8pt;
font-weight: bold;
margin: 0px 0px 0px 5px;

}
body div.note span {

display: block;
margin-left: 75px;

}
body div.note span#body {

font-size: 9pt;
display: block;
clear: left;
border-top: 1px solid #cfcfcf;
margin: 5px;
padding: 5px;
text-align: justify;

}
</style>

</head>

<body>

<xsl:for-each select="correspondence/note">
<div class="note">

<label for="from" id="label_from">From:</label>
<xsl:value-of

select="from"/>
<label for="to" id="label_to">To:</label>

<xsl:value-of
select="to"/>

<label for="heading" id="label_heading">Subject:</label>
<xsl:value-of

select="heading"/>
<label for="body" id="label_body"></label>

<xsl:value-of
select="body"/>

</div>
</xsl:for-each>

</body>
</html>
</xsl:template>

</xsl:stylesheet>

To use this XSLT template, we simply define its usage in the second line of our now modified XML data
document:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<?xml-stylesheet type="text/xsl" href="example_xml_xhtml_xslt.xsl"?>
<correspondence>

<note>
<to>John</to>
<from>Chris</from>
<heading>Riverbend Project Meeting</heading>
<body>Quick meeting to discuss and define the scope of the project.</body>

</note>
<note>

<to>Lisa</to>
<from>Chris</from>
<heading>Riverbend Project Meeting</heading>
<body>Quick meeting to discuss and define the scope of the project.</body>

</note>
<note>

<to>Joseph</to>
<from>Chris</from>
<heading>Riverbend Project Meeting</heading>

Document generated by Confluence on Apr 04, 2008 19:03 Page 87

<body>Quick meeting to discuss and define the scope of the project.</body>
</note>

</correspondence>

When the XML data document is now viewed with a Web Browser client, the XSLT template transforms
the XML data elements, creating a <DIV> XHTML element for each note XML element. Tthe XSLT XHTML
transformation has the from XML element rendering before the to XML element. This shows us that
information contained in the XML data document can be both conditionally displayed (regardless or order)
or even omitted from the transformed markup.

Document generated by Confluence on Apr 04, 2008 19:03 Page 88

2.0 Getting started

This page last changed on Mar 31, 2008 by jservais.

Topics in this section

• Architectural, project, and visual design considerations
° Architectural patterns
° Thoughts about content

• Domino Web capabilities
• Planning for accessibility and compliance
• Understanding the Web browser client environment

Document generated by Confluence on Apr 04, 2008 19:03 Page 89

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Architectural%2C+project%2C+and+visual+design+considerations
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Architectural+patterns
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Thoughts+about+content
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+Web+capabilities
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Planning+for+accessibility+and+compliance
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+Web+browser+client+environment

Architectural, project, and visual design considerations

This page last changed on Mar 31, 2008 by jservais.

• Project considerations
• Visual design considerations
• Architectural considerations
• Additional topics

Project considerations

If you have experience building Notes Client applications, you might find that Web projects are similar. Of
course, once your users are in a Web client, expectations change dramatically. Your application must
compare favorably with the navigation, page flow, and visual experience on many professionally designed
Web sites. To do this, you need a good multi-discipled project team. This team usually includes a
business client, project manager, and programmers depending on the size of the project.

When building Web applications, a graphics designer with Web experience should also be involved in the
project. Graphic designers should not be seen as "button makers", as they so often are in technical
projects. Graphics and product designers have been trained in creative exploration techniques to refine
and improve user experiences, and you should do your best to take advantage of these skills.

Another key member of the team is the client representative. This could be the client, but most likely a
member of the internal team who represents the client in the day-to-day project decisions. This person
should not be a technical member of the team but should understand the project goals and constraints.
The key responsibility of this role is to ensure that the client/user/business point of view is reinforced
throughout the project and provide resource to test ideas, resolve issues and communicate with the client
as needed.

If you are working independently and don't have access to these additional resources, be creative in
finding others to perform these roles. You or your client may have access to design resource on a short
term basis and you can ask a college to represent your clients point of view. Even the most experienced
technician professional can benefit from these perspectives during the course of the project.

Visual design considerations

When you are involved in Web applications design, you may be handed a design layout at the start of the
project or have the opportunity to work with a graphic designer to develop the application. Even if you
are given a layout, you may need work with the designers to refine it deal with technical limitations.
Designers are not always technical, but they have been trained to deal with technical constraints, so be
patent and clearly explain any limitations which impacts their design, and work through it.

Because these are all inextricably connected, we cover navigation and page flow with visual design
considerations in the following sections. If you are working with a designer or designing it yourself, follow

Document generated by Confluence on Apr 04, 2008 19:03 Page 90

the guidance presented here.

Get organized

• Use a mind-mapping tool to categorize content and help design the primary and alternate
navigation.

• Use a flowchart diagramming tool to map out any processes.
• Find and isolate common processes and identify patterns.
• Prioritize elements that support both short-term and long-term user/application goals.
• Use this information to help with the following tasks:

° Confirm your assumptions.
° Set design goals and expectations.
° Educate stakeholders.
° Coordinate the development team.

Keep it simple and consistent

• Make it easy to get around:
° Use simple menus that do not have too many levels.
° Avoid drop-down menus, but if you need to use them keep it to two levels (to avoid mouse

"gymnastics").
° Put the next tier of menus on the page (as a second row or as a sidebar).
° Keep end user actions together and make them easy to find.
° Put key actions at the top and bottom of working area to avoid scrolling.

• Make it easy to figure out where you are:
° Use clear readable page titles with enough white-space to set it apart from the rest of the page

text.
° If page titles are ambiguous or repeated more than once, precede it with the logical parent

section e.g. "Customer Service - Feedback"
° Make sure you have an HTML Title tag in the page header. It should have the site/application

name and the page name e.g. "Sample.com - About this application"
° Use breadcrumbs whenever possible, but use short page names as "crumbs." You can design

your application with two titles for each page, one for the page and a shorter one for use in
breadcrumbs, HTML Titles, and user friendly URLs.

• Keep relevant information handy:
° Keep second-tier information on the page to let users move through without having to move

back up.
° Supply supporting information when gliding users through a process.
° Think of creative ways to provide context-sensitive help (pop-ups, using title="help text"

parameters on <DIV> and elements, etc.).
° If you are guiding a user through a critical process, keep distracting information off the page,

such as checkout on a purchasing application, or approval on a workflow application.
• Think about relevant "look and feel" requirements:

° You may have specific requirements regarding the Web site look and feel. Be aware these
needs and wishes.

° Many organizations or companies have user interface standards that address their requirement
for a common look and feel for all their web pages. Familiarize yourself with these standards
and requirements to make sure they are addressed in your design.

° To avoid visual ambiguity:
- Keep the look and feel clear and consistent.
- Don't crowd the page.

Document generated by Confluence on Apr 04, 2008 19:03 Page 91

http://en.wikipedia.org/wiki/Mind-map
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/HTML_element#Head_elements
http://en.wikipedia.org/wiki/Breadcrumb_(navigation)

- Visual elements, blocks of information, margins, and so on etc. should not move around
from page to page (add this to QA criteria).

- Use whitespace appropriately (not too much or too little).
- Make sure margins are consistent and line up between vertical sections.
- Use color consistently, don't mix shades, don't have clashing colors, and make sure colors

have enough contast to be readable.

Remember to consider the content

Content is the key to a successful site. As noted previously, understanding the nature of the content
within your site or application determines the structure and design. You must also consider the following
items in regard to content:

• Where the content is generated
• The result of input into an application
• Whether it is provided by another application
• Whether it is created centrally by specific department
• Whether it is produced as part of a participative process

For more information about content, see Thoughts about content

Architectural considerations

While there is no finite checklist, any architectural planning for application development projects require
that we consider seemingly unrelated variables that will ultimately influence the overall application. In the
following section, we outline specific considerations and explain their importance.

Who will use this application

While it may seem a basic question to ask who will use the application, the answer we get is often the
most critical to the application architecture process. For example, let's say that we are creating a Sales
Force Automation application for Riverbend. This application has a target user audience that consists of
sales and sales associates, customer service, and management. Understanding both how and where
these particular business units work, as well as what technology they have available to them,
all-but-define your application architecture.

• Riverbend has an extremely mobile salesforce, who rely on their Blackberry mobile devices and
primarily keep their company-issue notebook computers in their home offices.

• Sales associates are primarily based out of one of several office locations, using a combination of
notebook and desktop computers.

• Customer service is based out of Riverbend corporate headquarters and want to tie this application
in with their existing Notes Client-based CS application.

• Management includes executive level and VIPs who want to review the information in a "sales
pipeline" and require reports that are both functional and "visually stimulating".

In order for an application to be successful, we need to architect it to specific functional requirements of
the intended user community. For Riverbend's Sales Force Automation application, this includes
accounting for the mobile salesforce, the customer service application integration, and various metrics

Document generated by Confluence on Apr 04, 2008 19:03 Page 92

http://en.wikipedia.org/wiki/White_space_(visual_arts)
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Thoughts+about+content
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Riverbend+Coffee+and+Tea+Company

reporting.

What are the organization's current technology investments

Cataloging our organization's current (and future) technology investments allows us to understand our
architecture options. Just as when we asked who will use this application, by questioning the
organizations current technology investments, we can understand which technology we can use to
provide our user community with a solution. Knowing which technology is (and will be) used by the
organization, and possibly more importantly how the technology solutions portfolio will be used provides
a developer with other vital information: "What technology do I not need to consider?"

For example, Riverbend is currently using Microsoft Office as their productivity suite. There is no intention
for Riverbend to adopt a competing productivity suite, and plans are already in place for future upgrades
pending future releases. Knowing this, we can utilize Microsft Office-specific functionality and
integration-points in our applications without needing to consider a move to a different technology.

What is the expected life cycle of this application

Some development projects result in the creation or maintenance of applications that address business
requirements, while other development projects result in _sunset_ applications or applications that are
used to address a particular and immediate business need while a more "enterprise"-level solution is
tested and deployed. By understanding the expected life cycle of our applications, we can understand
both the complexity and flexibility of the application. For example, a sunset application may not require
the built-in maintenance that a non-sunset application. Non-sunset applications often require an
architecture that allow the application to be self-maintained and designed to easily allow revisioning.
Alternately, a sunset application often requires an architecture that facilitates easy and immediate
exporting of all data to the specific target solution.

In addition, by understanding that our application is a sunset application, we can provide feedback on the
research and intended deployment of a target solution and can even alleviate the need for such a target
solution.

Most sunset applications become sunset applications due to a given project champion or decision
maker(s) not understanding the flexibility of their current technology investments. We have the
opportunity, where and when appropriate, to advise on a better way of utilizing current technology
investments that very well may, unknown to those individuals deciding on a particular second-version
solution, completely address the business requirement.

When is the application deployment or deliverable expected

Understanding the expected deployment or deliverable date or dates for your development projects can
greatly impact the architecture of your applications. For example, high-priority/quick-deliverable solutions
often require that we refrain from trying more experimental technologies and methodologies in favor for
production-ready and time-tested architectures.

Where will this application be used

Document generated by Confluence on Apr 04, 2008 19:03 Page 93

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Riverbend+Coffee+and+Tea+Company

Understanding the geographic locations can greatly influence and affect the architecture of our solutions.
Projects in which low-bandwidth areas, for example, can create "thin-client" or even offline application
architectures.

How will the user community use this application

Understanding how the user community will use your application can greatly influence your solution
architecture. This is often achieved by understanding the business process and inter-department
workings of your target user audience.

Additional topics

• Architectural patterns
• Thoughts about content

Document generated by Confluence on Apr 04, 2008 19:03 Page 94

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Architectural+patterns
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Thoughts+about+content

Architectural patterns

This page last changed on Mar 31, 2008 by jservais.

• Web site content management
• Commerce site
• Customer relationship management
• Internal communication (intranet)
• Human resources
• Policy documents

Web site content management

Share your best practices and thoughts here.

Client based

Share your best practices and thoughts here.

Browser based

Share your best practices and thoughts here.

Commerce site

Share your best practices and thoughts here.

Consumer

Share your best practices and thoughts here.

Business to Business

Share your best practices and thoughts here.

Customer relationship management

Share your best practices and thoughts here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 95

Internal communication (intranet)

Share your best practices and thoughts here.

Information sharing

Share your best practices and thoughts here.

Image library

Share your best practices and thoughts here.

Employee self service

Share your best practices and thoughts here.

Human resources

Share your best practices and thoughts here.

Policy documents

Share your best practices and thoughts here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 96

Thoughts about content

This page last changed on Mar 31, 2008 by jservais.

It is important to discover early on the type of content with which you are working so that the designer
and developer can plan for the content at the start of the project. Ask the following questions about the
content that you want to include:

• Has the content been written specifically for the Web?
Text written for reports, and white papers don't always work in a browser. Sometimes its best to
break this into multiple pages or summarize on the page and supply a PDF for download.

• Does the content need to edited by a copywriter?
It may seem excessive, but you may find involving a professional writer helpful if you are trying to
accomplish any of the following goals:

° Reach an external audience.
° Document complex processes.
° Be persuasive or instructive.

• Does the content and imagery have the necessary rights?
If you do not have the right to use a piece of content on the Web, you need to plan for the time it
takes to purchase the rights.

• Do you have a rationale for the editorial style of the Web site?
If you already have an audience in mind and you can define the style your are striving for, to appeal
to this audience.

• How text heavy is the site?
As well as considering the editorial style of the site, you must also consider how easy it will be to
digest this information. If it is a text heavy site, you must design with this in mind.

• Are you likely to include maps, charts or graphs?
Make sure these fit into the overall design. These may have to be re-created by a designer and will
impact your budget and timeline.

Document generated by Confluence on Apr 04, 2008 19:03 Page 97

Domino Web capabilities

This page last changed on Mar 31, 2008 by jservais.

• Web services
• Mail services
• Directory services
• Data services

The Lotus Domino Server contains several modules, or server tasks. These tasks perform many functions
usually available as separate servers from other middleware vendors. These some of tasks can also be
seen as services, in a service-oriented architecture (SOA), which can talk to other applications or
integrate with your solution.

A big advantage of a Domino-based solution is how easy a Web developer can mash together a
sophisticated application by using these services within the integrated application environment of Lotus
Notes, which has been designed from the start for building collaborative solutions.

In the following sections, we identify the services that you should know to help architect your Domino
Web application.

Web services

• HTTP server
One of the aforementioned server tasks is the Web, or HTTP server with Secure Sockets Layer (SSL)
support. This can be used as a simple HTTP server which can serve up HTML pages from the Domino
server data directory. By default pages stored in the domino\html directory will be available as if
from the root directory of an HTTP server. These defaults can be changed in Domino server
administration, and multiple HTTP servers can be managed on a single Domino server.

• Web application server
While the Domino HTTP server can serve up stand alone HTTP pages, it's real value is how it
supports the Domino Web application server. This application server is designed to interpret Notes
client based applications and translate then into HTML, JavaScript constructs and publish them to
the Web through the HTTP server. see Architecture of the Domino Web Server

• Web services provider and consumer
A Web service provider publishes a Web service for query and use, and a Web service consumer
calls operations from the service. A Web service provider makes available a Web Services
Description Language (http://www.w3.org/TR/wsdlWSDL) document that defines the service
interface. Incoming requests from a consumer are passed through to the underlying code, and
results are passed back to the consumer. Lotus Domino maps the WSDL interface to an agent-like
Web service design element that can be coded in LotusScript or Java. This allows your Web
site/application to retrieve information from internal and external services or supply information as
needed, to support a service-oriented architecture (SOA) in your design.

Document generated by Confluence on Apr 04, 2008 19:03 Page 98

http://www.ibm.com/developerworks/lotus/library/ls-Architecture_of_the_Domino_Web_Server_Part1/index.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www-306.ibm.com/software/solutions/soa/entrypoints/index.html?S_TACT=107AG01W&S_CMP=campaign

• Web Retriever
The Lotus Domino Web Retriever task is responsible for retrieving Web pages on behalf of Notes
client users who want to access the Web via their server. It also supports the variety of LotusScript
and Java methods, such asGetDocumentByURL, so that you can obtain the HTML code of a Web
page and parse through it. This is useful in "republishing" time sensitive or status information from
HTML on other sites or applications (e.g. stock prices etc.)

Mail services

• POP3 mail server and IMAP mail server
Domino provides Post Office Protocol Version 3 (POP3) and Internet Mail Access Protocol
(IMAP4rev1) servers. Both implement Internet mail protocols that supports a user running a POP3
or IMAP clients. The Domino server receives and stores mail for users, who can then connect to the
server to retrieve their mail. The IMAP service differs from the POP3 service in that users are not
required to download messages to a local computer to read and manipulate them. These services
may be relevant if you want to support mail users using alternate clients, but both services are
derived from the built in messaging capabilities of the Domino platform.

• SMTP server
Domino supports sending and receiving mail over Simple Mail Transfer Protocol (SMTP) by means of
the SMTP listener task and SMTP Router, respectively, each of which you enable separately. The
SMTP listener task handles incoming SMTP connections and delivers messages received over those
connections. While not directly related to Web applications, this capability helps you to integrate
SMTP mail into you overall Domino solutions

Directory services

• LDAP Client/Server
Domino provides a Lightweight Directory Access Protocol (LDAP) server. LDAP is a standard Internet
protocol for searching and managing entries in a directory. Many Internet clients and middleware
products use LDAP to share and look up directory information. Domino LDAP support is quite
sophisticated. If you need LDAP services, you can review its capabilities in the Domino
Administration help. Domino can also function as an LDAP client and can easily integrate external
LDAP information into the Domino directory, which can be used to authenticate Web application
users.

Data services

• Database server
Domino includes a database management system (DBMS), although it is not a relational DBMS nor
an object database. Rather it is a document-centric database. It allows multiple values in items
(fields), doesn't require a schema, has built-in document-level access control, and can store
RichText data. This document orientation sometimes behave more like as XML document natively
stored in a database, and like XML, Domino supports hierarchical relationships. While many Web
application development frameworks cater to relational back-ends, the unstructured hierarchical
nature of Domino makes it ideal for rapidly collecting and evolving Web-based solutions. For
example, post to a Notes form with no fields defined and capture all information posted. The
presentation and categorization can be programmed later.

Document generated by Confluence on Apr 04, 2008 19:03 Page 99

• DIIOP server
DIIOP is CORBA over IIOP for Lotus Domino. It is primarily used in Domino to allow the Domino
Java applets in the web client to talk directly to the Domino without refreshing the page. This is also
the way WebSphere, other IBM products and third-party applications access Domino information
remotely over TCP/IP.

Document generated by Confluence on Apr 04, 2008 19:03 Page 100

Planning for accessibility and compliance

This page last changed on Apr 03, 2008 by jservais.

• Compliance
• Accessibility

Compliance

In short, compliance is making sure your Web site or Web application conforms to all appropriate
standards that apply. This may seem simple enough, but you may find determining which standards
apply daunting, and in practice, those standards may also have different interpretations. Regardless of
these issues, Web standards help ensure that everyone has access to the information we are providing
and makes Web development faster and easier.

Compliance is one aspect of accessibility, which makes it easier for people with special needs to use the
Web, but there are also many practical reasons for developers to be concerned with Web standards.
While search engines can do a better job of indexing sites, browser-specific code often doubles or triples
the development effort.

Standards may seem limiting but many of the current uses of the Web would not be possible without
widespread standards compliance.

The standards

• HTML 4.0 - Hypertext Markup Language (HTML) is used for adding structure to text documents.
• Extensible Markup Language (XML) is a markup language like HTML, but instead of having a single,

fixed set of elements, it allows you to define your own.
• XHTML 1.0 is a reformulation of HTML as an XML application.
• HTML 4.01, and being technically stricter because of XML's influence.
• Cascading style sheets (CSS) are a mechanism for changing the appearance of HTML or XML

elements.
• Document Object Model Level 1 (DOM 1) allows the full power and interactivity of a scripting

language.

Compliance is just the first step in the goal of accessibility. The broad definition of compliance means
compliant applications are accessible to a greater range of devices and applications. These devices and
applications can reinterpret compliant information for a broader audience, for example into voice by page
readers or reuse through mash ups.

Accessibility

In many countries, businesses and organizations are legally required to ensure that their services,

Document generated by Confluence on Apr 04, 2008 19:03 Page 101

including Web sites and other media, are accessible to everyone regardless of disability. Such disabilities
may include a vision, hearing, physical movement, or reading and comprehension abilities.

The following examples of legislation have provisions requiring physical accessibility:

• In the U.S., under the Americans with Disabilities Act of 1990
• In Australia, Disability Discrimination Act 1992
• In the U.K., the Disability Discrimination Act 1995

Special guidelines have been created by the World Wide Web Consortium (W3C) to cover accessibility of
Web sites. In conjunction with their guidelines, the Web Accessibility Initiative (WAI) have defined three
standards of accessibility for Web sites - Single A, Double A and Triple A. Single A is the most basic
standard to which all Web sites should comply.

Reasons to consider accessibility

Your business should think about accessibility for the following reasons:

• Avoid legal disputes
If your site does not conform to legislation (see above), then you could be the target of legal action
against you for not ensuring your Web site is accessible.

• Reach a wider audience
Currently you probably unknowingly exclude some visitors to your Web site. Turn those users into
customers and you will grow your business further.

• Gain the competitive edge
If your Web site is accessible to all when your competitors' Web sites are not, you gain an
immediate advantage over them.

• Enhance your image
Negative reports have been in the press about companies who have not tried to make their products
and services accessible to all. Taking positive action should have the reverse effect and enhance
your image in the marketplace.

• Improvements for all
To meet some of the required standards, coding enhancements need to be made. This has the
additional advantage of improving compliance with new browsers and devices and potentially
improving overall performance for all users.

Ensuring accessibility

If you already have Web sites or applications, audit them to see what actions you need to take to bring
them in line with the W3C standards.

If you are developing new projects, you can refer to the Web Accessibility Initiative (WAI), which is part
of the World Wide Web Consortium (W3C). This organization developed the Web Content Accessibility

Document generated by Confluence on Apr 04, 2008 19:03 Page 102

http://www.w3.org/WAI/

Guidelines (WCAG) which explains how to make Web content accessible to people with disabilities. Web
"content" generally refers to the information in a Web page or Web application, including text, images,
forms, sounds, and such. The WCAG is separated into three levels of compliance, A, AA and AAA. Each
level requires a stricter set of conformance guidelines, such as different versions of HTML (transitional
vresus strict) and other techniques that need to be incorporated into your code before accomplishing
validation.

Tools are available to help assess Web sites against these standards. See the Human Ability and
Accessibility Center

Online tools exist that help developers to submit their Web site and automatically run it through the
WCAG guidelines and produce a report, stating whether they conform to each level of compliance. In
addition, commercial software is available with similar functionality such as the IBM Rational Policy Tester
Accessibility Edition. Also many development tools such as Adobe® Dreamweaver®, IBM Rational tools
and Eclipse, have facilities or plug-ins to support compliance with accessibility standards.

To comply with accessibility standards, consider including the following concepts in your design:

• (X)HTML validation from the W3C for the pages content
• CSS validation from the W3C for the pages layout
• At least WAI-AA (preferably AAA) compliance with the WAI's WCAG
• Compliance with all guidelines from Section 508 of the US Rehabilitation Act
• Use HTML Access keys
• Semantic Web Markup
• Supply a high contrast version of the site for individuals with low vision
• Provide alternatives (transcript) for any multimedia used on the site (video, flash, audio, etc.)

For more detailed information, see Web accessibility developer guidelines from IBM.

Accessible Web sites and applications should include a Web accessibility statement on the site to explain
conformance, special facilities, and the commitment to accessibility.

Document generated by Confluence on Apr 04, 2008 19:03 Page 103

http://www.w3.org/TR/WAI-WEBCONTENT/
http://www-03.ibm.com/able/
http://www-03.ibm.com/able/
http://www-306.ibm.com/software/awdtools/tester/policy/accessibility/
http://www-306.ibm.com/software/awdtools/tester/policy/accessibility/
http://www.access-board.gov/sec508/guide/1194.22.htm
http://www.w3.org/TR/WCAG10-HTML-TECHS/#link-accesskey
http://www.w3.org/2001/sw/
http://www-03.ibm.com/able/guidelines/web/accessweb.html

Understanding the Web browser client environment

This page last changed on Apr 04, 2008 by dalandon.

• The Web browser client environment
• Using Web browser transport layers
• HTTP cookies

At an elementary level, the Web browser client acts as the rendering device for the services provided by
(in this case) the Domino Server. However, the Web browser client can offer a near-limitless functional
capacity when we consider the rendering and integration capabilities that the "this client" affords the
Domino Web Developer that understands the Web browser client environment. In leveraging this
environment, we can provide our user community with rich applications that rival (and may even exceed
in some cases) their Lotus Notes Client counterparts.

In this section, we review the Web browser client environment and how Domino Web application
developers can use this environment to provide users with rich applications.

The Web browser client environment

The Web browser client environment is your current prototypical client/server environment. A "thin client"
(the Web browser client in this case) communicates to a server environment via direct calls to
server-generated resources and services. This explains the relationship between a Web browser client
and a Domino Server in our Domino Web application environments.

Document generated by Confluence on Apr 04, 2008 19:03 Page 104

The Web browser client can act as a middleware or conduit solution, facilitating server and local computer
data interaction. This data interaction and the combination of local computer and server-generated
resources and services can be used to create rich "thin client" solutions. By understanding the
bidirectional interaction of data and using its communicated and rendered content we can mimic the
Lotus Notes Client and other "rich client" functionality in our Domino Web application development
practices.

Using Web browser transport layers

The Web browser client, most recently with the advent of AJAX, can use bidirectional data interaction via
transport layers. The utilization of transport layers, the communication methods and channels that are
present "between" the user interface and the underlying system architecture, can facilitate fluid and more
enhanced user interfaces for our Domino Web applications.

Document generated by Confluence on Apr 04, 2008 19:03 Page 105

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+2.0+primer

Prior to the advent of AJAX, hidden <iframe> elements were used to communicate between dynamic UIs
and back-end services via now standard Transport Layer/Web 2.0 development methodologies. As AJAX
becomes a more standards-based approach to dynamic user interfaces and Web Service mashups, the
utilization of transport layers to combine local client data and server-based resources and services is
becoming a global user community expectation for current Web applications and services.

HTTP cookies

On of the most commonly used facilities for locally caching reusable data is the HTTP Cookie. When used
properly, the HTTP Cookie can store data strings that can be used throughout an application alleviating
the repeated querying of Server-maintained or user input data.

The following example shows the common syntax for HTTP cookies:

NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure

Note that in this example, all uppercase attributes are user-defined. The HTTP cookies are stored locally
on the user device and are accessible throughout your applications.

For more information about HTTP cookies, see the following resources:

• http://www.quirksmode.org/js/cookies.html
• http://www.w3schools.com/js/js_cookies.asp

Document generated by Confluence on Apr 04, 2008 19:03 Page 106

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+services+primer
http://www.quirksmode.org/js/cookies.html
http://www.w3schools.com/js/js_cookies.asp

3.0 Understanding the Domino design elements

This page last changed on Apr 01, 2008 by jservais.

This section helps you understand the key Domino design elements.

Topics in this section

• Database
° Default Launch Elements
° Tab specific database functionality

• Domino design elements
° A design elements overview

- Adding HTML to a design
- All Domino URLs
- CGI variables
- Changing the content type of a design element
- Common design properties on Web applications
- Styling text for the Web
- Working with the DOCTYPE

° Agent design elements
° Applet design elements
° Design element multi-aliasing
° File resources design elements
° Folder design elements
° Form design elements

- HTMLOptions and HTMLTagAttribute fields
- Special reserved fields
- Understanding the form HTML source code
- Using forms versus pages

° Frameset design elements
° Image resource design elements
° Java library design elements
° JavaScript library design elements
° LotusScript library design elements
° Page design elements

- Using pages to submit data
° Profile documents
° Shared field design elements
° Subforms design elements
° View design elements

- Rapid application development
- SearchTemplate

° Web service design elements

Document generated by Confluence on Apr 04, 2008 19:03 Page 107

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Database
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Default+Launch+Elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Tab+specific+database+functionality
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/A+design+elements+overview
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Adding+HTML+to+a+design
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/CGI+variables
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Common+design+properties+on+Web+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styling+text+for+the+Web
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Agent+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Design+element+multi-aliasing
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/File+resources+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Folder+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTMLOptions+and+HTMLTagAttribute+fields
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Special+reserved+fields
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+form+HTML+source+code
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+forms+versus+pages
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Frameset+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Image+resource+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Java+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/LotusScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+pages+to+submit+data
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Profile+documents
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Shared+field+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Subforms+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Rapid+application+development
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SearchTemplate
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+service+design+elements

Database

This page last changed on Mar 27, 2008 by heinsje.

This section covers the following topics:

• Default Launch Elements
• Tab specific database functionality

Document generated by Confluence on Apr 04, 2008 19:03 Page 108

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Default+Launch+Elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Tab+specific+database+functionality

Default Launch Elements

This page last changed on Apr 04, 2008 by dalandon.

Defining a Default Launch Element

Depending on the functional requirements of our Domino Web application, you may be required to have a
specific Default Launch Element (DLE). The DLE can vary based on the specific needs of your user
community or the specific function or design of our Domino Web applications. In this section, we will
review several DLE methods and examples.

Application-specific and example DLEs

Application function types often drive the DLE logic because the combination of various Domino design
elements are often required to achieve the results that are required by certain types of applications.
When we understand the different types of DLEs, we can then properly construct our application-specific
DLE. In the following sections, we discuss the various types and examples of DLEs.

Simple DLEs

Most Domino Web developers are familiar with the the simple DLEs of Web application development:
Frameset design elements and Page design elements. While Page Design Element DLEs are still useful
and can provide our user community with a viable DLE solution, using Frameset Design Elements have
become a depreciated practice.

For more information about depreciated Web application development practices, see Web
standards primer.

As stated, the Page Design Element DLE can provide the user community with a perfectly functional
solution, but as we extend our Web application development to include external technologies and more
advanced user interfaces, we discover that Form design elements often make the more logical choice
when defining a Default Launch Element.

In the following sections, we discuss several methods and practices to use Form Design Element DLEs.

Index DLEs

The Lotus Notes Help databases are perfect examples of Index DLE applications. These applications
launch with a Frameset-like display, typically consisting of an index, or navigator combined with a content
body, or main section dedicated to the display of the highlighted/selected content.

Document generated by Confluence on Apr 04, 2008 19:03 Page 109

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Frameset+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements

As the usage of Frameset Design Elements are depreciated, we architect our DLE toward Web
Development Standards, which require the combination of several Domino design elements.

In the above example, we have an index on the left in blue and a content body on the right in red. We
can achieve this same layout easily with the following design elements:

1. Create a blank Navigator Design Element named "index.html".
2. Create a Form Design Element named "$$NavigatorTemplate for index.html".

Document generated by Confluence on Apr 04, 2008 19:03 Page 110

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer

3. In the Form Design Element, add your desired user interface elements, objects, and markup.
4. Modify the Database Launch Properties to "Open designated Navigator in its own window" and select

the "index.html" Navigator Design Element.

For more information about how to even further extend this type of design element architecture,
see Design element multi-aliasing.

Dashboard DLEs

Dashboard DLEs are becoming more and more popular with the advent of portals, mash-ups, and
composite application development.

Document generated by Confluence on Apr 04, 2008 19:03 Page 111

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Design+element+multi-aliasing

Tab specific database functionality

This page last changed on Apr 03, 2008 by jservais.

• Database title
• Web access
• Full-text index
• Soft delete

Database title

Having a meaningful database title is important in developing a good Web application. The title usually
relates to a name of a company if you are building a Web site for a company or it could be an application
name.

One of the advantages of having a meaningful database title is that you can use @DbTitle to display the
database title throughout your Web application. You can use the formula on the Web site header or
window title. If you change the database title, the change is reflected throughout the application.

Tip

It is a good idea to have a unique window title for every form, page, or view (by using
$$ViewTemplate) that you have in the database. A Web Page Tracking utility, such as Google
Analytics, has an option to show the most visited pages by Window/Page Title. If you do not set

Document generated by Confluence on Apr 04, 2008 19:03 Page 112

the title, you must guess what the pages are by looking at the long Domino URLs.

Web access

Use JavaScript when generating pages option

The Use JavaScript when generating pages option is always checked by default when creating a new
database. We recommend that you leave this option selected when developing a Web browser client
application. The main reason is that we can only have one button on our form if we deselect the option.
The button is a submit button at the bottom of our form that is generated by Domino.

The following table shows the detailed effects on this option (taken from the Designer Help).

If the option is selected If the option is not selected

Display: Documents and navigators display faster
because hotspot formulas are not evaluated until
users click each hotspot.

Display: Documents and navigators display more
slowly because the hotspot formulas are all
evaluated at the display time.

Buttons: Domino doesn't generate a Submit
button automatically.
To allow users to save and close a form on the
Web, you must create a button, hotspot, or action
that contains these commands:

@Command([FileSave]);
@Command([CloseWindow])

Buttons: Domino automatically generates a
Submit button, at the bottom of the form.
If there is already one or more buttons on the
form, Domino converts the first button it
recognizes to a Submit button automatically and
ignores all other buttons on the form.
You can have only one button, a Submit button,
on a form.

Document generated by Confluence on Apr 04, 2008 19:03 Page 113

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements

You can have multiple buttons on a form.

@Commands: The following commands are
supported on the Web:

@Command([CloseWindow])
@Command([FileSave])
@Command([ViewRefreshFields])

Domino does not check the formulas before
displaying pages.

@Commands: The following commands are not
supported on the Web:

@Command([CloseWindow])
@Command([FileSave])
@Command([ViewRefreshFields])

Domino checks the formulas before displaying
pages. Actions that contain unsupported
@commands or @functions are not displayed on
the Web.

Require SSL connection option

The Require SSL Connection option is not selected by default. We select this option if we have a Web
application that uses an SSL connection. This option ensures that any connection to the database uses
SSL (HTTPS). A typical use of SSL is when your Web application accepts, for example, credit card
transactions or stores confidential information, such as a Social Security Number or salary information.

Note

The administrator can also set SSL by using either Internet site documents or a server document
in the Domino Directory.

Don't allow URL open option

The Don't allow URL open option is not selected by default. If this option is selected, any URL command
in the browser that uses the question mark syntax (?OpenForm, ?OpenView, etc) does not work on the
database. Domino generates the following error message:

Error 500
HTTP Web Server Lotus Notes Exception - You are not authorized to access that database.

This option is rarely used because Domino developers rely on the Domino URLs when building their
application. However, it is useful when you are designing a Web application that uses a servlet. The
servlet issues all the Domino URLs in the back end, so that the Domino server allows it to go through.

Tip

There are other techniques that we can use to prevent users from accessing certain views in a
database. You can customize the $$ViewTemplate for the views with the "You are not authorized
to access this section" message, or you can customize the $$ViewTemplateDefault if you have
$$ViewTemplate for all the views that you display.

Full-text index

Document generated by Confluence on Apr 04, 2008 19:03 Page 114

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Error+handling#Errorhandling-CatchingServerErrors
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Error+handling#Errorhandling-CatchingServerErrors

In order to do a full-text search by using the ?SearchView Domino URL command, the full-text index
must be created. When you create a full-text index, you see the options as shown in the following Create
Full-Text Index window.

The following table shows more information about each option (taken from the Designer Help).

Option Description

Index attached files Searches all documents and any attachments.
*Without filters, Search processes only the ASCII
text of the attachments, and may not find all
content.
*With filters, Search may be able to process other
parts of the files.
Notes:

Document generated by Confluence on Apr 04, 2008 19:03 Page 115

• Without filters is faster than With filters but
less comprehensive. Text in attachments is
not highlighted.

• Attachments are located in the $FILE field in
a document, though a picture of them
appears in the BODY field. If you specifically
search the BODY field for attachments, you
won't find the information.

Index encrypted fields Searches all words in fields, including encrypted
fields.
Attention: Selecting this option compromises the
security of information in encrypted fields.

Index sentence and paragraph breaks Searches words in the same sentence or
paragraph.

Enable case-sensitive searches Searches for words by exact case match. Selecting
this means that when you enter 'EXACTCASE'
followed by your search terms, searches for your
words exactly as you enter them.
Example: If you enter "EXACTCASE Apple" in the
search box, Search does not find "apple."
Note: Selecting this option increases the size of a
full-text index by 5 to 10%.

Update frequency (servers only) Determines the frequency of automatic updates
for the index. The server administrator determines
the actual time or date for updating the full-text
indexes of applications that use the Daily, Hourly,
or Scheduled options. If you choose Immediate,
the full-text index is created on the server as soon
as possible.
The option applies only to server-based
applications and to local replicas of server-based
applications (for example, a local replica of your
mail application). A local replica must have this
option set to Immediate if you want the full-text
index updated automatically during the replication
process.

For more information about full-text searching, see Searching on Section 4.0.

Soft delete

Document generated by Confluence on Apr 04, 2008 19:03 Page 116

In certain situations, we might need to allow deletion on our Web application. However, we want the
ability to review and track the deletion before the documents are gone forever. By selecting the Allow soft
deletion option, documents are deleted, but they are still available in the database for the period you
specify. In order to view these deleted documents, create a view and choose Shared, contains deleted
documents. You can restore these deleted documents in Notes client by using the @UndeleteDocument
formula.

Document generated by Confluence on Apr 04, 2008 19:03 Page 117

This is not a good solution if your company needs to comply with a certain regulations, such as
Sarbanes-Oxley document retention. Having a good archive and restore process is a more appropriate
solution.

Document generated by Confluence on Apr 04, 2008 19:03 Page 118

Domino design elements

This page last changed on Apr 01, 2008 by jservais.

Lotus Domino was built to be a collaborative tool, focusing on fast-paced collaboration and productivity.
Lotus Domino Designer enables application developers to create complex Web applications by using a
unique intuitive integrated development environment (IDE). Domino offers a compact set of design
elements that when combined allow developers to easily work on common Web design tasks, including
pages and form creation, database records listing, and simple interface elaboration. The design elements
are displayed differently according to the environment used by the user, and may vary according to other
application and environment settings. On the Web, Lotus Domino design elements behave similar to their
versions in Lotus Notes client with only minor differences. This design can be used programmatically and
be invoked by using Domino URLs. It is only a matter of time to understand and use the available design
properly on a Domino application.

Topics in this section

• A design elements overview
• Agent design elements
• Applet design elements
• Design element multi-aliasing
• File resources design elements
• Folder design elements
• Form design elements
• Frameset design elements
• Image resource design elements
• Java library design elements
• JavaScript library design elements
• LotusScript library design elements
• Page design elements
• Profile documents
• Shared field design elements
• Subforms design elements
• View design elements
• Web service design elements

Document generated by Confluence on Apr 04, 2008 19:03 Page 119

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/A+design+elements+overview
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/A+design+elements+overview
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/A+design+elements+overview
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Agent+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Design+element+multi-aliasing
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/File+resources+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Folder+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Frameset+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Image+resource+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Java+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/LotusScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Profile+documents
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Shared+field+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Subforms+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+service+design+elements

A design elements overview

This page last changed on Apr 01, 2008 by jservais.

• Frameset
• Pages
• Forms
• Views
• Folders
• Agents
• Web Services
• Outlines
• Shared resources
• Composite application components
• Navigators
• Additional topics in this section

The Domino application design is composed of several different types of design elements, each one with a
different function over an application. In this section, we discuss the design elements that are available
on the Web with Domino Designer Release 8.

Frameset

A frameset is an element that displays a set of frames that enables designers to improve the usage of the
users' screen. A frame is a small portion of a frameset that is used to display a design component in a
specific space of the application screen. By using framesets, designers can create relationships between
frames, combining navigation, linking and data display on a same screen. The frameset design element
allows designers with no experience on HTML to create Web site framesets in an intuitive tool. For more
information, refer to Frameset design elements.

Pages

Pages are the best design available in Domino Designer to display information for the user. With pages,
designers can store rich text data, including images and formatted text, and some programmatic
components, including buttons and actions. In a Web environment, programmers can take advantage of
the available rich text converter, which translates the Notes design entered on a body into HTML. For
more information, refer to Page design elements.

Forms

Just like pages, forms enable designers to display information on a page. Everything that can be done
with a page can be done with a form. Between forms and pages, forms allow the collection of data of the

Document generated by Confluence on Apr 04, 2008 19:03 Page 120

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Frameset+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements

unique information from the user. To achieve data storage, forms offers a variety of fields of different
data types, each of them representing a column in the Lotus Notes database model. When working on the
Web, Lotus Domino creates the proper HTML tags for fields and forms on its pages automatically,
enabling programmers to code applications much faster. Using forms also enables running several event
driven computations. For more information, refer to Form design elements.

Views

Views are the most used way to allow users to navigate into applications' data collected on forms. They
are basically used to display a selection of documents from a Lotus Notes database. Views can be sorted,
customized and searched. On the Web, views can be formatted in template forms to allow user
interaction, search and navigation over the database records. For more information, refer to View design
elements.

Folders

Folders are containers that store documents. From the design point of view, folders are similar to views.
The main difference between views and folders is that views have a selection of documents, while a folder
remains empty until a set of records is moved to it. Folders can be used to display database data on the
Web just like views. For more information, refer to Folder design elements.

Agents

Agents are Lotus Notes programs that can run a variety of computations. They run from several
application-based events, from user triggered events to scheduled tasks. Agents can do simple tasks,
from moving database data, to running complex computation like running Java programs. Agents can be
called on several background tasks on the Web, including on forms events and using Domino URLs with
arguments. For more information, refer to Agent design elements.

Web Services

A Web service is a self-contained, self-describing, modular application, based on XML, that can be
published to and invoked from the Web. Lotus Domino Web Services are based on the WSDL language
and SOAP protocol W3C standards. By using Web Services, programmers can modularize enterprise
services in a standardized programming model, reducing application maintenance effort and improving
reuse.

On Lotus Domino release 8, programmers can also create Web Services consumers to use available Web
Services implementations from the Lotus Domino Designer IDE. For more information, refer to Web
service design elements.

Document generated by Confluence on Apr 04, 2008 19:03 Page 121

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Folder+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Agent+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+service+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+service+design+elements

Outlines

Outlines are simpler to implement navigation on a Lotus Notes application. By using an outline, designers
can allow user to access key functionalities from their applications on an intuitive navigation model.
Outlines can have diverse entries and can be embedded in pages and forms. Outlines can be also placed
in framesets, improving the usage of an application screen. On the Web, outlines help programmers
promote navigation and action invoking without needing HTML experience. For more information, refer to
outlines.

Shared resources

You can designate many items, such as graphics, fields, subforms, and even programs, as shared
resources. Shared resources allow simple access to a set of code used repeatedly over an application,
enabling reuse and reducing the application maintenance effort. In the following sections, we discuss the
shared resources that are available on a notes application.

Image resources

Image resources are graphic files that can be used across a Lotus Domino application. The use of image
resources helps application standardization and reduces the database file size by preventing the usage of
repeated images files across an application. Image resources can be invoked on the Web by using
embedding through Domino URLs. For more information, refer to Image resource design elements.

Shared fields

Shared fields have their properties defined in an unique field design, and reused across the database in
any form or subform. The use of shared fields helps to reduce the effort on application maintenance.
Shared fields can be used in conjunction with a variety of reserved fields on the Web to help Web-pages
programming and look and feel, including <head> tags definition and current session information through
CGI variables. For more information, refer to Shared field design elements.

Non-NSF file resources

Non-NSF file resources allow programmers to host non-Notes binary files in an NSF database for any kind
of usage. These resources are also available on the Web through Domino URLs, by allowing programmers
to host Web components, such as animations and plug-ins on a central repository, just like a common
Web server file system. For more information, refer to Non\-NSF file resources.

Subforms

A subform is a collection of designs, such as fields, graphics, buttons, and actions that a designer may
reuse in more than one form. They can be invoked programmatically depending on a document or
environment property. Subforms can be used on the Web to hold different sections of a page, just like
other server-side scripting languages like PHP or Microsoft ASP includes. For more information, refer to
Subforms design elements.

Document generated by Confluence on Apr 04, 2008 19:03 Page 122

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Image+resource+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Shared+field+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Subforms+design+elements

Script libraries

A script library is a repository to store code that can be shared in an application by using LotusScript,
JavaScript, and Java or in other applications using JavaScript and Java. Script libraries allow
centralization and reuse. On Web applications, JavaScript libraries can also be accessed through Domino
URLs, simplifying the access for cross-organizational routines. For more information, refer to JavaScript
library design elements and LotusScript library design elements.

Shared Java files

For big Java applets using various files, it is most efficient to store some of the related files as shared
resources in the database. When setting up files as shared resources, all the applets can use a single
copy of a file, instead of each applet storing its own copy. Therefore, in case of an update, only one file is
updated. For more information, refer to Applet design elements.

Shared actions

Shared actions can be used on forms, subforms, pages, and folders of views that have common user
activated tasks. On the Web, shared actions can be displayed using HTML or Java applets. For more
information, refer to shared actions.

Cascading style sheets

Cascading style sheets (CSS) can be hosted on a Domino environment for Web pages design information.
For more information, refer to Styles and CSS primer.

Composite application components

Composite applications are aggregations of multiple components brought together for a business
purpose. Composite applications can be used on a Domino Web application to bring "portalization", and
enabling the use of "portlet" like components. For more information, refer to composite application
components.

Navigators

Navigators are graphical components that help users navigate through specific parts of an application.
Navigators are not a recommended design element for Web applications, since they were surpassed by
other components that bring better and more efficient results. For more information, refer to navigators.

Additional topics in this section

Document generated by Confluence on Apr 04, 2008 19:03 Page 123

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/LotusScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer

• Adding HTML to a design
• All Domino URLs
• CGI variables
• Changing the content type of a design element
• Common design properties on Web applications
• Styling text for the Web
• Working with the DOCTYPE

Document generated by Confluence on Apr 04, 2008 19:03 Page 124

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Adding+HTML+to+a+design
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/CGI+variables
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Common+design+properties+on+Web+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styling+text+for+the+Web
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE

Adding HTML to a design

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Converting pages, forms, or subforms into HTML
• Importing HTML
• Pasting HTML
• Entering HTML directly on a page, form, or subform
• Including HTML on a page, form, or subform
• Notes on the form tag

Introduction

There are a number of ways you can include HTML on a page, form, or subform when you are designing.
If you have existing HTML or you prefer to use HTML instead of the formatting tools IBM Lotus Domino
Designer offers, you have the following options:

• Convert a page, form, or subform (or sections of the page, form, or subform) to HTML and use the
HTML editor to change the HTML.

• Import HTML, thus using the source of an existing Web page or form as the base of a new page or
form. Designer adds the imported HTML on the page, form, or subform already translated from
HTML.

• Paste HTML directly on a page, form, or subform. The HTML stays in HTML format.
• Enter HTML directly on a page, form, or subform. The HTML stays in HTML format.

Converting pages, forms, or subforms into HTML

You can convert some or all of the contents of a page, form, or subform into HTML source code and then
use the HTML editor to make changes to the HTML source code.

1. Open a page, form, or subform in Designer.
2. Select the contents of the page, form, or subform that you want to convert to HTML.
3. Choose Edit -> Convert to HTML. The selected contents are converted into HTML source code.

Because not everything in Notes has an exact equivalent in HTML, the conversion to HTML is an
approximation. You should always check your conversion results.
If you mistakenly convert something to HTML, choose Edit -> Undo Delete to recover. Do not
choose Edit - Convert to Notes because the conversion is not exact.
Note Buttons in Web applications that have JavaScript associated with the Click event are converted
to HTML as expected. However, buttons that do not have JavaScript associated with the Click event
are not converted to HTML. For the buttons that are not converted to HTML, choose Edit -> Undo
Delete so that the deleted button reappears on the page, form, or subform.

4. To use the HTML editor, place the cursor anywhere in the newly created HTML source code and
choose View -> HTML pane.

Document generated by Confluence on Apr 04, 2008 19:03 Page 125

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Subforms+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer

The screen splits. The page, form, or subform appears in the top pane (in an embedded Internet
Explorer browser control) and its HTML source code appears in the bottom pane.

5. You can edit the HTML source code in the bottom pane. Click Refresh to see the results in the top
pane of your HTML changes.

6. Press ESC to exit from the HTML editor.
7. (Optional) To convert the HTML to Lotus Notes format, place the cursor anywhere in the HTML

source code in the top pane and choose Edit -> Convert to Notes Format.
Note that the conversion to Notes format is an approximation. You should check your conversion
results. If you convert to HTML and then back to Notes, you may get unexpected results.

Importing HTML

To import HTML you must first save it as a file that you can access.

1. Open a page, form, or subform.
2. Choose File -> Import.
3. Select the file containing the HTML you want to import and click OK. Designer translates the HTML

and then adds it to the page, form, or subform.

Pasting HTML

1. Select the content you want to paste from the source of an existing Web page, form, or subform.
2. Copy the content to the clipboard.
3. Open a page, form, or subform.
4. Choose Edit -> Paste.
5. Open the Properties box for the page, form, or subform (Design -> <design element>

Properties).
6. On the Info tab, select Render pass through HTML in Notes.

Entering HTML directly on a page, form, or subform

1. Open a page, form, or subform.
2. Enter the HTML directly on the page, form, or subform.
3. Open the Properties box for the page, form, or subform (Design -> <design element>

Properties).
4. On the Info tab, select Render pass through HTML in Notes.

When you select this option, Lotus Domino passes all data on the page, form, or subform directly to
the browser. Domino ignores embedded navigators and folders and any embedded views that don't
have this option selected.

Including HTML on a page, form, or subform

Document generated by Confluence on Apr 04, 2008 19:03 Page 126

If you do not want the entire page, form, or subform treated as HTML, you can include HTML on the
page, form, or subform and mark this text as HTML. Domino Designer serves it correctly to the browser.

1. Enter or paste HTML on the page, form, or subform.
2. Select the text and choose Text -> Pass-Thru HTML.

Note
Pages, forms, or subforms that contain pass-thru HTML may display differently in the Notes client
than on a browser. For example, if you create nested tables by using pass-thru HTML, the table
may contain more white space when displayed in the Notes client than when displayed in a
browser.

Notes on the form tag

Domino generates its own form tag for editable forms. If you have a unique situation where your
application masthead or code has a form tag included, thereby creating a form tag within a form tag, it
might not work. For example, some company mastheads have search functionality that is implemented in
the HTML source by a form tag that submits to a search engine. Let us assume this case and say the
embedded masthead form tag has a title of "Search". Assume also that the domino form name in
question is called "Example", and therefore the Domino form tag has a name attribute of "Example". The
solution is to use the following steps:

1. Close the default domino form tag for the Domino "Example" form immediately after the self
generated <form> tag.

2. Create a new Domino form tag for the "Example" form after the <form> tag for "Search" has been
closed with </form>.

This solution prevents embedded form tags that may produce unpredictable behavior.

Document generated by Confluence on Apr 04, 2008 19:03 Page 127

All Domino URLs

This page last changed on Apr 04, 2008 by heinsje.

Domino URLs

Domino uses URLs to access servers, databases, and other components of a Web site. Knowing the URL
commands lets you design links or enter commands directly into a browser to navigate a site or reach
components quickly. You can use the URL commands to perform the following actions:

• Open databases and views
• Open framesets
• Open forms, navigators, and agents
• Open, edit, create, save, and delete documents
• Open documents by key name from a view
• Open pages
• Open resources
• Open attachments, image files, and OLE objects
• Open Web preferences
• Create search queries
• Require authentication
• Process SSL certificates
• Specify a character encoding

Attention
The URLs in the following sections are for example only. They are not intended to point to existing
Web sites unless specifically indicated.

Quick review of URL syntax for Domino

Domino URL commands have the following syntax:

http://Host/Database/DominoObject?Action&Arguments

Where:

• Host is the DNS entry or IP address.
• DominoObject is a Domino construct (such as a database, view, document, form, navigator, agent,

and so on).

URL commands for accessing DominoObjects use the following syntax:

http://Host/Database/DominoObject?Action&Arguments

Document generated by Confluence on Apr 04, 2008 19:03 Page 128

Where:

• Database is the database in which the DominoObject resides.
• Action is the action you want on the specified DominoObject (for example, ?OpenDocument).
• Arguments are the qualifiers for the action (for example, Count=10 combined with ?OpenView limits

the number of rows displayed in a view to 10).

Opening databases and views

The following commands access databases, views, About and Using documents, and database icons.

Redirect

Syntax:

http://Host/Database.nsf?Redirect&Name=Notesserver&Id=To=Encodedurl

Where:

• http: //Host refers to the Web server that is generating the URL.
• Name= Notesserver specifies a Domino server name in its common or abbreviated form. This is

optional when the "By Database" setting on the server is on.
• Id= indicates the replica ID of the database to be located. This is an optional argument.
• To= Encodedurl specifies the rest of the URL.

Example:

http://www.riverbendcoffee.com/database.nsf?Redirect&Name=Mail&Id=0525666D0060ABBF&To=%FAView%3FOpenView

OpenDatabase

This commands opens a database.

Syntax:

http://Host/DatabaseFileName?OpenDatabase http://Host/_DatabaseReplicaID?OpenDatabase

Examples:

http://www.riverbendcoffee.com/leads.nsf?OpenDatabase
http://www.riverbendcoffee.com/sales/discussion.nsf?OpenDatabase
http://www.riverbendcoffee.com/_852562F3007ABFD6?OpenDatabase

OpenView

Document generated by Confluence on Apr 04, 2008 19:03 Page 129

This command opens a view.

Syntax:

http://Host/Database/ViewName?OpenView
http://Host/Database/ViewUniversalID?OpenView
http://Host/Database/$defaultview?OpenView

Examples:

http://www.riverbendcoffee.com/leads.nsf/By+Salesperson?Open/View
http://www.riverbendcoffee.com/leads.nsf/DDC087A8ACE170F8852562F300702264?OpenView
http://www.riverbendcoffee.com/leads.nsf/$defaultview?OpenView

Optional arguments for OpenView

Append these optional arguments to refine the OpenView URL. Combine any of the following arguments
for the desired result.

• Start=n
Where n is the row number to start with when displaying the view. The row number in a hierarchical
view can include sub indexes (for example, Start=3.5.1 means the view will start at the third main
topic, subtopic 5, document 1).

• Count=n
Where n is the number of rows to display.

• ExpandView displays the view in expanded format.
• CollapseView displays the view in collapsed format.
• Expand=n

Where n is the row number to display in expanded format in a hierarchical view. Do not combine
this argument with the ExpandView or CollapseView arguments.

• Collapse=n
Where n is the row number to display in collapsed format in a hierarchical view. Do not combine this
argument with the ExpandView or CollapseView arguments.

• RestrictToCategory=category
Sets the category for "Show Single Category" object, where category is the category to be displayed
in the view.

• StartKey=string
Where string is a key to a document in the view. The view displays at that document.

Examples:

http://www.riverbendcoffee.com/leads.nsf/By+Category?OpenView&CollapseView
http://www.riverbendcoffee.com/leads.nsf/By+Category?OpenView&ExpandndView
http://www.riverbendcoffee.com/leads.nsf/By+Category?OpenView&RestrictToCategory=pricing
http://www.riverbendcoffee.com/leads.nsf/By+Category?OpenView&Start=3&Count=15
http://www.riverbendcoffee.com/leads.nsf/By+Category?OpenView&StartKey=F

OpenAbout

Use the $about?OpenAbout command to access the About This Database document.

Document generated by Confluence on Apr 04, 2008 19:03 Page 130

Syntax:

http://Host/Database/$about?OpenAbout

Example:

http://www.riverbendcoffee.com/leads.nsf/$about?OpenAbout

OpenHelp

Use the $help?OpenHelp command to access the "Using This Database" document.

Syntax:

http://Host/Database/$help?OpenHelp

Example:

http://www.riverbendcoffee.com/leads.nsf/$help?Open/Help

OpenIcon

Use the $icon?OpenIcon command to access the database icon.

Syntax:

http://Host/Database/$icon?OpenIcon

Example:

http://www.riverbendcoffee.com/leads.nsf/$icon?OpenIcon

ReadViewEntries

Use this command to access view data in XML form without appearance attributes such as fonts, list
separators, date formats, HTML settings, view templates and frame redirections.

Syntax:

http://Host/Database/ViewName?ReadViewEntries
http://Host/Database/ViewUniversalID?ReadViewEntries

Document generated by Confluence on Apr 04, 2008 19:03 Page 131

http://Host/Database/$defaultview?ReadViewEntries

Examples:

http://www.riverbendcoffee.com/leads.nsf/By+Salesperson?ReadViewEntries
http://www.riverbendcoffee.com/leads.nsf/DDC087A8ACE170F8852562F300702264?ReadViewEntries
http://www.riverbendcoffee.com/leads.nsf/$defaultview?ReadViewEntries

Optional arguments for ReadViewEntries

Append optional arguments to refine the URL. Combine any of the following arguments for the desired
result.

• Collapse=n
Where n is the row number to display in collapsed format in a hierarchical view. Do not combine this
argument with the ExpandView or CollapseView arguments.

• CollapseView displays the view in collapsed format.
• Count=n

Where n is the number of rows to display
• Expand=n

Where n is the row number to display in expanded format in a hierarchical view. Do not combine
this argument with the ExpandView or CollapseView arguments.

• ExpandView displays the view in expanded format.
• KeyType=textortime

Specifies the StartKey type of either text or time. If no argument is specified, the default is text.
When you specify &KeyType=time, you can specify a time value, like ISO date time value, for both
the &StartKey and &UntilKey arguments.

• PreFormat
Causes all data types to be converted to text on the server. Text lists, numbers, dates and lists of
numbers are converted to text before being sent. The server's locale is used for all formatting.
Without this argument, the XML output stream contains information in structured, locale-neutral
formats.

• ResortAscending=column number or ResortDescending=column number
Where column number is a 0-based number of a column in a view that you want to resort either
ascending or descending in alphanumeric order.

• RestrictToCategory=category
Sets the category for the "Show Single Category" object, where category is the category to be
displayed in the view Start=nWhere n is the row number to start with when displaying the view. The
row number in a hierarchical view can include sub indexes (for example, Start=3.5.1 means the
view will start at the third main topic, sub-topic 5, document 1).

• StartKey=string
Where string is a key to a document in the view. The view displays at that document.

• UntilKey=string
Displays a range of view entries that begin with the document specified by the StartKey and end
with the document specified by the UntilKey. The &UntilKey argument is only valid with the
&StartKey argument. You can use the &Count argument to limit the number of entries returned by
the range.

• Outputformat=JSON
For further support of AJAX Web applications, Lotus Domino 8 provides JavaScript Object Notation
(JSON) as an output format to let you more quickly create AJAX Web applications.

Document generated by Confluence on Apr 04, 2008 19:03 Page 132

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JSON

Example:

http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&CollapseView
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&ExpandView
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&KeyType=time&StartKey=20020715&UntilKey=20020714
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&KeyType=text&StartKey=Aa&UntilKey=Ab
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&PreFormat
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&ResortAscending=3
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&ResortDescending=3
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&RestrictToCategory=pricing
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&Start=3&Count=15
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&StartKey=F
http://www.riverbendcoffee.com/leads.nsf/By+Category?ReadViewEntries&Outputformat=JSON

Opening framesets

This command opens framesets.

OpenFrameset

Syntax:

http://Host/Database/FramesetName?OpenFrameset
http://Host/Database/FramesetUNID?OpenFrameset

Examples:

http://www.riverbendcoffee.com/discussion.nsf/main?OpenFrameset
http://www.riverbendcoffee.com/discussion.nsf/35AE8FBFA573336A852563D100741784?OpenFrameset

Opening forms, navigators, and agents

The following commands open forms, navigators, and agents in a database.

OpenForm

Syntax:

http://Host/Database/FormName?OpenForm
http://Host/Database/FormUniversalID?OpenForm
http://Host/Database/$defaultform?OpenForm

Examples:

http://www.riverbendcoffee.com/products.nsf/Product?Openform
http://www.riverbendcoffee.com/products.nsf/625E6111C597A11B852563DD00724CC2?OpenForm
http://www.riverbendcoffee.com/products.nsf/$defaultform?OpenForm

Document generated by Confluence on Apr 04, 2008 19:03 Page 133

Optional arguments for OpenForm

ParentUNID =UniqueIDNumber
Where UniqueIDNumber is the document ID of the parent document, which is used in response forms or
when the form property "Formulas inherit values from selected document" is selected.

Syntax:

http://Host/Database/FormUniversalID?OpenForm&ParentUNID=UniqueIDNumber

Example:

http://www.riverbendcoffee.com/products.nsf/
40aa91d55cle4c8285256363004dc9e0?OpenForm&ParentUNID=6bc72a92613fd6bf852563de001f1a25

OpenNavigator

Syntax:

http://Host/Database/NavigatorName?OpenNavigator
http://Host/Database/NavigatorUniversallID?OpenNavigator
http://Host/Database/$defaultNav?OpenNavigator

Examples:

http://www.riverbendcoffee.com/products.nsf/Main+Navigator?OpenNavigator
http://www.riverbendcoffee.com/products.nsf/7B5BC17C7DC9EB7E85256207005F8862?OpenNavigator
http://www.riverbendcoffee.com/products.nsf/$defaultnav?OpenNavigator

Note
$defaultnav opens the folders pane in a database.

OpenAgent

Syntax:

http://Host/Database/AgentName?OpenAgent

Example:

http://www.riverbendcoffee.com/sales/leads.nsf/Process+New+Leads?OpenAgent

Note: Agents may only be referred to by name. The use of UNID is not supported when referring to an
agent.

Document generated by Confluence on Apr 04, 2008 19:03 Page 134

ReadForm

Use the ReadForm command to display a form without showing its editable fields. ReadForm is useful for
displaying a form as a simple Web page.

Syntax:

http://Host/Database/FormName?ReadForm
http://Host/Database/FormUniversalID?ReadForm
http://Host/Database/$defaultform?ReadForm

Examples:

http://www.riverbendcoffee.com/home.nsf/Welcome?ReadForm
http://www.riverbendcoffee.com/products.nsf/625E6111C597A11B852563DD00724CC2?ReadForm
http://www.riverbendcoffee.com/products.nsf/$defaultform?ReadForm

Creating, opening, editing, saving, and deleting documents

The following commands manipulate documents in a database. Hidden design elements are hidden from
the server. You cannot use Domino URL commands to access documents in hidden views.

CreateDocument

The CreateDocument command is used as the POST action of an HTML form. When the user submits a
form, Domino obtains the data entered in the form and creates a document.

Syntax:

http://Host/Database/Form?CreateDocument
http://Host/Database/FormID?CreateDocument

Examples:

http://www.riverbendcoffee.com/products.nsf/basketballs?CreateDocument
http://www.riverbendcoffee.com/products.nsf/b9815a87b36a85d9852563df004a9533?CreateDocument

OpenDocument

Syntax:

http://Host/Database/View/DocumentKey?OpenDocument
http://Host/Database/View/DocumentUniversalID?OpenDocument
http://Host/Database/View/$First?OpenDocument

Document generated by Confluence on Apr 04, 2008 19:03 Page 135

Note: DocumentKey is the contents of the first sorted column in the specified view.

Examples:

http://www.riverbendcoffee.com/products.nsf/By+Part+Number/PC156?OpenDocument
http://www.riverbendcoffee.com/leads.nsf/By+Rep/35AE8FBFA573336A852563D100741784?OpenDocument
http://www.riverbendcoffee.com/leads.nsf/$First?OpenDocument

Optional arguments for OpenDocument

See the Optional outline arguments sidebar for outline arguments that apply to both OpenDocument and
OpenPage.

EditDocument

Syntax:

http://Host/Database/View/Document/?EditDocument

Example:

http://www.riverbendcoffee.com/products.nsf/By+Part+Number/PC156?EditDocument

Note: Rich text fields containing hidden text will be visible to Web users with editor access to documents.

SaveDocument

The SaveDocument command is used as the POST action of a document being edited. Domino updates
the document with the new data entered in the form.

Syntax:

http://Host/Database/View/Document?SaveDocument

Example:

http://www.riverbendcoffee.com/products.nsf/
a0cefa69d38ad9ed8525631b006582d0/4c95c7c6700160e2852563df0078cfeb?SaveDocument

DeleteDocument
Syntax:

http://Host/Database/View/Document?DeleteDocument

Document generated by Confluence on Apr 04, 2008 19:03 Page 136

Example:

http://www.riverbendcoffee.com/products.nsf/By+Part+Number/PC156?DeleteDocument

Opening documents by key

The following commands allow you to open a document by key, or to generate a URL to link to a
document by key.

Using Domino URLs to access a document

To open a document by key, create a sorted view with the sort on the first key column. Then you can use
a URL to open the document.

Syntax:

http://Host/DatabaseName/View/DocumentName?OpenDocument

View is the name of the view, and DocumentName is the string, or key, that appears in the first sorted or
categorized column of the view. Use this syntax to open, edit, or delete documents, and to open attached
files. Domino returns the first document in the view whose column key exactly matches the
DocumentName.

There may be more than one matching document. Domino always returns the first match. The key must
match completely for Domino to return the document. However, the match is not case-sensitive or
accent-sensitive.

Note
View can be a view UNID or view name. In addition, the implicit form of any of these commands
will work when appropriate. EditDocument and DeleteDocument must be explicit commands.

Examples:

http://www.riverbendcoffee.com/register.nsf/Registered+Users/Jay+Street?OpenDocument

LDD Today uses a document key view called Lookup. For example, the URL for this article is:
http://www.lotus.com/ldd/today.nsf/lookup/Domino_URL_cheat_sheet?OpenDocument
To get a closer look at the Lookup view, you can download the LDD Today design template from the
Sandbox here on LDD.

Using Domino URLs to access attachments

To access a file attachment by using a Domino URL, you must know the view name, the document name,
and the file attachment name. Domino generates an URL for file attachments when it saves the
documents to which the files are attached. These URLs end with the file name of the attachment.

Document generated by Confluence on Apr 04, 2008 19:03 Page 137

http://www.lotus.com/ldd/today.nsf/lookup/Domino_URL_cheat_sheet?OpenDocument

Syntax:

http://Host/DatabaseName/View/DocumentName/$File/fileattachmentname

View is either the view name or the view ID, and DocumentName is the document name or ID. $File is a
special identifier that indicates an attachment on a document. Fileattachmentname is the file name of the
attachment.

Examples:

http://www.riverbendcoffee.com/products.nsf/Documents/$File/Spec_sheet.pdf

Opening pages

The following command opens a page element using its name, UNID, or Note ID.

OpenPage

Syntax:

http://Host/Database/PageName?OpenPage
http://Host/Database/PageUNID?OpenPage

Examples:

http://www.riverbendcoffee.com/discussion.nsf/products?OpenPage
http://www.riverbendcoffee.com/discussion.nsf/35AE8FBFA573336A852563D100741784?OpenPage

Optional arguments for OpenPage

See the Optional outline arguments sidebar for outline arguments that apply to both OpenDocument and
OpenPage.

Opening resources

The following commands open image and file resources stored in an database.

OpenImageResource

Opens graphics stored as image resources in a database.

Syntax:

Document generated by Confluence on Apr 04, 2008 19:03 Page 138

http://Host/Database/ImageResourceName?OpenImageResource

ImageResourceName is the file name of the image resource that you want to open.

Example:

http://www.riverbendcoffee.com/discussion.nsf/banner.gif?OpenImageResource

OpenFileResource

Opens a file resource stored in a database.

Syntax:

http://Host/Database/FileResourceName?OpenFileResource

Where FileResourceName is the name of the file that you want to open.

Example:

http://www.riverbendcoffee.com/discussion.nsf/index.js?OpenFileResource

Opening attachments, image files, and OLE objects

The ?OpenElement command opens attachments, image files, and OLE objects within a document.

Using ?OpenElement with file attachments

Syntax:

http://Host/Database/View/Document/$File/Filename?OpenElement

Example:

http://www.riverbendcoffee.com/lproducts.nsf/By+Part+Number/SN156/$File/spec.txt?OpenElement

Note: If more than one attached file has the same name, the URL includes both the "internal" file name
as well as the external name. Since the internal file name is not easily determined, make sure that all
attached files have unique names.

Domino treats all file attachment OpenElement commands as implicit commands, because some browsers

Document generated by Confluence on Apr 04, 2008 19:03 Page 139

require that the URL end with the attached file name.
Example:

http://Host/Database/View?Document/$File/FileName

Using ?OpenElement with image files

Syntax:

http://Host/Database/View/Document/FieldName/FieldOffset?OpenElement&FieldElemFormat=ImageFormat

FieldOffset is the field number and the byte offset into the field. ImageFormat is either GIF or JPG. If the
FileElemFormat is not entered, Domino assumes the image file format is GIF.

Example:

http://www.riverbendcoffee.com/leads.nsf/
bbe63a6b9d895dc6852567d600658601/fe5138bef254cf3a852569fc00724b69/Body/0.18AA?OpenElement&FieldElemFormat=jpg

Using Open Element with OLE Objects

Syntax:

http://Host/Database/View/Document/FieldName/FieldOffset/$OLEOBJINFO/FieldOffset/obj.ods?OpenElement

Note: The current URL syntax for referencing images and objects in Notes documents-specifically the
FieldOffset-makes it impractical to create these URLs manually. As an alternative, you may paste the
actual bitmap or object in place of the reference, create URL references to files stored in the file system,
or attach the files to the documents.

Opening user Web preferences

The following command opens Web preferences, a Domino feature that lets users set time zone and
regional preferences.

OpenPreferences

Syntax:

http://Host/$Preferences.nsf?OpenPreferences&Argument

Where:

Document generated by Confluence on Apr 04, 2008 19:03 Page 140

• Host indicates a server or a domain
• $Preferences.nsf is a virtual database that "resides" on the Domino server
• ?OpenPreferences displays the default frameset of the virtual database
• &Argument is an optional argument that you can specify to open a page instead of the frameset

The $Preferences.nsf database resides at the root of each server.

Example:

http://www.riverbendcoffee.com/$Preferences?OpenPreferences

Optional argument for OpenPreferences

You can append the following optional arguments to the ?OpenPreferences command to open a specfiied
page rather than the Web preferences default frameset. PreferenceType=valueWhere value can be one of
the following values described in the table.

Value Description

Menu Displays the Menu page that provides links to the
Time Zone and Regional preferences page.

TimeZone Displays the Time Zone preferences page.

Regional Displays the Regional preferences page.

Examples:

http://www.riverbendcoffee.com/$Preferences?OpenPreferences&PreferenceType=Menu
http://www.riverbendcoffee.com/$Preferences?OpenPreferences&PreferenceType=TimeZone
http://www.riverbendcoffee.com/$Preferences?OpenPreferences&PreferenceType=Regional

Creating search queries

Search-related URLs are available for performing view, multiple-database, and domain searches. Typically
you define a URL that displays an input form-either a customized search form or the default search
form-to let users define their own searches, but you may also define a URL that performs text searches
without user input. Both input and results forms may be customized.

SearchDomain

Use SearchDomain URLs for text searches across a domain. The search input form is opened with the
OpenForm command by name or universal ID. For search results, the results template is specified as part
of the URL. If no template is found, then the default template form, $$SearchDomainTemplate, is
substituted. If $$SearchDomainTemplate is not found, an error will be returned. If no results are
returned, the value of the $$ViewBody field remains the same.

Syntax:

Document generated by Confluence on Apr 04, 2008 19:03 Page 141

http://Host/Database/TemplateForm?SearchDomain&ArgumentList

Where:

• TemplateForm is an optional argument that calls the search results form.
• ArgumentList is a list of optional arguments.

Example:

http://www.riverbendcoffee.com/domainsearch.nsf/SearchForm?SearchDomain

SearchSite

Use SearchSite URLs for text searches in multiple databases. Because the URL requires the name of a
search site database, be sure to create one before using a SearchSite URL.

Syntax:

http://Host/Database/$SearchForm?SearchSite&ArgumentList

Where $SearchForm and ArgumentList are optional arguments.

Example:

http://www.riverbendcoffee.com/searchsite.nsf/$SearchForm?SearchSite

SearchView

Use SearchView URLs to limit a search to documents displayed in one database view. This URL is useful
for views that display all documents (so you can have a full-database search) or for views in which you
can predict what users need to see, such as all documents whose status is Completed.

Syntax:

http://Host/Database/View/$SearchForm?SearchView&ArgumentList

Where $SearchForm and ArgumentList are optional arguments. The special identifier $SearchForm
indicates that Domino will present a search view form for search input. If this identifier is provided, the
ArgumentList is ignored. If this identifier is absent, a default form is generated on the fly based on the
contents of the search.htm file located on the server. The default form generated by the server does not
support paged results.

Example:

Document generated by Confluence on Apr 04, 2008 19:03 Page 142

http://www.riverbendcoffee.com/products.nsf/By+Product+Number/$SearchForm?SearchView

Optional arguments for SearchSite, SearchView, and SearchDomain

• $SearchForm
$SearchForm is a special identifier indicating a custom search form that Domino displays. When this
argument is specified, Domino ignores all arguments that follow it. If this argument is not specified,
Domino displays a default search form based on the search.htm file on the server.

• Query=string
Where string is the search string.

• Count=n
Where n is the number of results to display on each page until the SearchMax has been reached. For
example Count=10 displays 10 results per page.

• Scope=[0,1,2]
Where 1=Notes databases only, 2=file system only, 0=both. The default value is 0. This argument
should only be used with the SearchDomain command.

• SearchEntry=formName
Where formName is the name of the form to use for the results of a domain search. The default
argument is "ResultEntry," which supports all of the predefined results fields specified in the
ArgumentList. This argument is valid for SearchDomain only and should not be used for SearchSite
or SearchView.

• SearchFuzzy=[TRUE,FALSE]
Indicate TRUE for fuzzy search. The default is FALSE.

• SearchOrder=[1,2,3,4]
Indicate 1 to "Sort by relevance", 2 to "Sort by date ascending", 3 to "Sort by date descending." The
default is 1. SearchView also supports a SearchOrder value of 4 to "Keep current order", which sorts
the resulting set of documents in the order in which they appear in the view.

• SearchMax=n
Where n is the maximum number of entries returned. The default value is determined by the server.

• SearchWV=[TRUE, FALSE]
Where TRUE = include word variants in the search. The default value is FALSE.

• Start=n
Where n is the number corresponding to the document that appears first in your list of results. For
example, Start=10 begins your list of results with the 10th document found in the search. Start=0
means that paged results will not be returned.

You can use the Start and Count arguments with the SearchView or SearchSite URLs as well as with the
search results page to display search results page-by-page. The Start argument specifies which result
appears first in the search results list. The Count argument determines the number of results displayed
on the screen. For instance, if you specify Start=1 and Count=10, the search results begin with the first
result and displays the next ten results on the screen. If results extend beyond ten, you can use button
or hotpsots to navigate the search results pages.

For more information about creating buttons or hotspots for the Start and Count arguments, refer to
Creating custom and advanced searches using Domino.

Examples:

http://www.riverbendcoffee.com/welcome.nsf/
?SearchSite&Query=product+info+requests&SearchOrder=2&SearchMax=30&SearchWV=TRUE&SearchEntry="myResultForm"

Document generated by Confluence on Apr 04, 2008 19:03 Page 143

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Creating+custom+and+advanced+searches+using+Domino

http://www.riverbendcoffee.com/products.nsf/By+Product+Number/
?SearchView&Query=PC156&SearchOrder=3&SearchMax=1&SearchFuzzy=TRUE&SearchWV=FALSE

Login

Syntax:

http://Host/Directory/Database?OpenDatabase&Login

Example:

http://www.riverbendcoffee.com/sales/leads.nsf?OpenDatabase&Login

OpenForm with SpecialAction argument

Syntax:

http://Host/Database/FormName?OpenForm&SpecialAction=specialActionField

Where specialActionField is the name of an editable text field on the form whose value contains a
predefined command. To use the field with SSL certificates, use one of the following certificate request
commands:

• SubmitCert
• ServerRequest
• ServerPickup

Examples:

http://www.riverbendcoffee.com/certs.nsf/UserCertificateRequest?OpenForm&SpecialAction=SubmitCert
http://www.riverbendcoffee.com/certs.nsf/ServerCertificateRequest?OpenForm&SpecialAction=ServerRequest
http://www.riverbendcoffee.com/certs.nsf/Certificate?OpenForm&SpecialAction=ServerPickup

SubmitCert

The SubmitCert command creates a User Certificate document in the specified database, using the form
specified in the TranslateForm argument.

Syntax:

Document generated by Confluence on Apr 04, 2008 19:03 Page 144

http://Host/Database/ResultForm?RequestCert&Command=SubmitCert&TranslateForm=TranslationFormName

Where:

• ResultForm is a form in the specified database that displays information about the processed
request.

• TranslationFormName represents a form in the database that contains fields to hold certificate
information.

Example:

http://www.riverbendcoffee.com/certs.nsf/
CertificateProcessed?RequestCert&Command=SubmitCert&TranslateForm=Certificate&TranslateForm=Certificate

Optional and required fields

The SubmitCert command requires a translation form with a field named Certificate. Domino saves
information about the certificate subject and issuer in the document if the form contains fields with these
names:

• CommonName
• Org
• OrgUnit
• Locality
• State
• Country
• IssuerCommonName
• IssuerOrg
• IssuerOrgUnit
• IssuerLocality
• IssuerState
• IssuerCountry

ServerRequest

The ServerRequest command creates a Server Certificate Request document in the specified database, by
using the form specified in the TranslateForm argument.

Syntax:

http://Host/Database/MessageForm?RequestCert&Command=ServerRequest&TranslateForm=TranslationFormName

ResultForm is a form in the specified database that displays information about the processed request in
the user's browser after a successful submission. TranslationFormName represents a form in the
database that contains fields to hold certificate information.

Example:

Document generated by Confluence on Apr 04, 2008 19:03 Page 145

http://www.riverbendcoffee.com/certs.nsf/
CertificateProcessed?RequestCert&Command=ServerRequest&TranslateForm=Certificate&TranslateForm=Certificate

Optional and required fields

The ServerRequest command requires a translation form with a field named Certificate. Domino saves
information about the server request in the document if the form contains fields with these names:

• CommonName
• Org
• OrgUnit
• Locality
• State
• Country

Specifying character encoding

To specify character encoding for a design element, append the charset= MIME charset argument to the
end of any URL command. You can use this argument with any design element or Notes object, including
agents, folders, views, databases, and so on. This argument returns a form or page in the specified
language or character set overriding the Web browser's preferred language setting as well as the
$$HTMLContentLang field of a form. To use the charset=MIME charset argument, you must include it in
your application. The Domino server does not generate this argument automatically.

Syntax:

http://Host/Form?OpenForm&charset=MIMEcharset

Form is either the form name or ID to open and MIME charset indicates the character encoding applied to
the form.

Domino recognizes a limited number of character set names. If Domino does not recognize a specified
character set, it defaults to the character set specified in the Server document.

Example:

http://www.riverbendcoffee.com/products.nsf/Product?Openform&charset=ISO-2022-JP

The previous example opens the Product form with a Japanese character encoding.

Document generated by Confluence on Apr 04, 2008 19:03 Page 146

CGI variables

This page last changed on Apr 03, 2008 by jservais.

• Using CGI in a Domino application
• List of CGI variables on Domino

Using CGI in a Domino application

Common Gateway Interface (CGI) is an Internet standard for external application connection across HTTP
servers. With CGI programs, programmers can add back-end processing over a Web page. To run
external CGI programs on a Domino environment, you should place them in the default cgi-bin directory
or in a directory that has execute access. Because Domino does not maintain access control at the file
system level, scripts must include access control measures to prevent unauthorized use. For further
information, refer to security considerations.

Diverse CGI variables are available to designers on Domino. When an user saves or opens an existing
document on the Web for example, the Domino Web server uses CGI variables to collect information
about the user, including the user's name, browser, and the user's Internet Protocol (IP) address.
To capture this information in a Web application, you can use several techniques, for example:

• Create a field with the name of a CGI variable. Example: Query_String.
• Create an agent whose script contains a CGI variable using the NotesDocument.DocumentContext

property.
• Create a $$Return field on your form, and invoke a CGI variable combined with some HTML

instructions to display a success message for submitted documents.

List of CGI variables on Domino

Domino captures the following CGI variables through a field or a LotusScript agent. You can also capture
any CGI variable preceded by HTTP or HTTPS. For example, cookies are sent to the server by the browser
as HTTP_Cookie.

Field name Returns

Auth_Type If the server supports user authentication and the
script is protected, this is the protocol-specific
authentication method used to validate the user.

Content_Length The length of the content, as given by the client.

Content_Type For queries that have attached information, such
as HTTP POST and PUT, this is the content type of
the data.

Document generated by Confluence on Apr 04, 2008 19:03 Page 147

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Security+considerations

Gateway_Interface The version of the CGI spec with which the server
complies.

HTTP_Accept The MIME types that the client accepts, as
specified by HTTP headers.

HTTP_Accept_language The languages that the client accepts, as specified
by HTTP headers.

HTTP_Referer The URL of the page the user used to get here.

HTTPS Indicates if SSL mode is enabled for the server.

HTTPS_CLIENT_CERT_COMMON_NAME The common name on the x.509 certificate

HTTPS_CLIENT_CERT_ISSUER_COMMON_NAME The issuer of the x.509 certificate

HTTPS_KEYSIZE The session key during an SSL session. For
example, 40-bit, 128-bit.

HTTP_User_Agent The browser that the client is using to send the
request.

Path_Info The extra path information (from the server's root
HMTL directory), as given by the client. In other
words, scripts can be accessed by their virtual
path name, followed by extra information that is
sent as PATH_INFO.

Path_Info_Decoded Returns the same as Path_Info, but decodes the
string. For example, if a URL references a view
name that contains characters that are not allowed
a URL, the name is encoded. This CGI variable
decodes the string. Path_Info_Decoded is available
to Domino applications only.

Path_Translated The server provides a translated version of
PATH_INFO, which takes the path and does any
virtual-to-physical mapping to it.

Query_String The information that follows the question mark (?
) in the URL that referenced this script.
Note: If your Domino server is configured to allow
search engines to search your Web site, Domino
generates URLs with an exclamation mark (!)
instead of a question mark (?). If this is the case,
the Query_String CGI variable includes the
information that follows the exclamation mark (!).
Domino always recognizes both the question mark
(?) and the exclamation mark (!), but only
generates URLs with the exclamation mark (!) if
your site is accessible to Web search engines.
Generating URLs with an exclamation mark (!)
makes them more searchable.

Query_String_Decoded Returns the same as Query_String, but decodes
the string. For example, if a URL references a view
name that contains characters that are not allowed
in a URL, the name is encoded. This CGI variable
decodes that string. Path_Info_Decoded is

Document generated by Confluence on Apr 04, 2008 19:03 Page 148

available to Domino applications only.

Remote_Addr The IP address of the remote host making the
request.

Remote_Host The name of the host making the request.

Remote_Ident This variable is set to the remote user name
retrieved from the server. Use this variable only
for logging.

Remote_User Authentication method that returns the
authenticated user name.

Request_Content Supported only for agents. Contains the data sent
with an HTTP POST request. The data is usually
"URLencoded," consisting of name=value pairs
concatenated by ampersands. For example,
FirstName=John&LastName=Doe

Request_Content_nnn Used when the amount of data to be sent with an
HTTP POST request exceeds the 64K limit. The
first 64K of data is sent in Request_Content_000,
the second 64K of data is sent in
Request_Content_001, and so on.

Request_Method The method used to make the request. For HTTP,
this is "GET," "HEAD," "POST," and so on.

Script_Name A virtual path to the script being executed, used
for self-referencing URLs.

Server_Name The server's host name, DNS alias, or IP address
as it would appear in self-referencing URLs.

Server_Protocol The name and revision of the information protocol
accompanying this request.

Server_Port The port to which the request was sent.

Server_Software The name and version of the information server
software running the CGI program.

Server_URL_Gateway_Interface The version of the CGI spec with which the server
complies.

For more information about CGI environment variables, refer to
http://hoohoo.ncsa.uiuc.edu/cgi/env.html.

Document generated by Confluence on Apr 04, 2008 19:03 Page 149

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

Changing the content type of a design element

This page last changed on Apr 03, 2008 by jservais.

• Changing the content type on forms and pages
• Changing the content type on agents

Content type, also known as MIME type, specifies the nature of a resource. The content type is used to
specify the nature of a data in the body of a MIME entity, by giving media type and subtype identifiers,
and by providing auxiliary information that may be required for certain media types. Examples of content
types include "text/html", "image/png", "image/gif", "video/mpeg", "text/css", and "audio/basic". Thus,
despite the fact that a file can have an .htm extension, if it does not have a "text/html" header content
type, it is not rendered on a browser as a common hypertext Web page. The same can happen with
images, video clips and many others.

Domino provides a way to change the content type header of some elements. In the next section, we
explain how to achieve this on several design elements.

Changing the content type on forms and pages

Changing the content type to HTML

To change the content type of a form or page to HTML, in the design element Properties box, on the
Basics tab, for Web Access, select HTML for Content type.

Setting the content type of a page design element to text/html

Document generated by Confluence on Apr 04, 2008 19:03 Page 150

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Content+type
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer

When this setting is applied, all the content of a form is rendered as is. You do not need to format text
using Notes rich text or pass through HTML setting to the text.

Important
When a content type different from the default (Notes) is set, all the design element properties,
such as window title, JS header code, and so on, are lost, and the page is treat as text. The
unique portion of code evaluated by the Web browser is the plain text entered on the design
element body.

Changing the content type to XML

To change the content type of a form or page to XML, in the design element Properties box, on the Basics
tab, for Web Access, select Other for Content type and an enter the value "application/xml" on the input
box.

Setting the content type of a design to application/xml

Changing the content type on agents

Agents can be used to write custom content on the Web. Designers can take advantage of this, and
change the content type of an agent called from an URL to write an specific content. To achieve this,
make sure that the first line "printed" from your agent is the definition of its content type (header
information).

Print "Content-type: text/xml " & Chr(13)

The previous example demonstrates how to change the content type of an agent on run-time to XML
using the LotusScript Print statement. This can be used to display custom XML data, like RSS feeds.

Document generated by Confluence on Apr 04, 2008 19:03 Page 151

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/RSS

Tip
To call an agent from an URL that writes data for the user on-the-fly, in the agent properties box,
on the Basics tab, for Runtime, set Trigger to On event. Then select Agent list selection, and
set Target to None.

Setting an agent to be invoked from an URL and print data

For information about how to work with the Doctype declaration on a Web page, refer to Working with
the DOCTYPE.

Document generated by Confluence on Apr 04, 2008 19:03 Page 152

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE

Common design properties on Web applications

This page last changed on Apr 03, 2008 by jservais.

• Pages and forms
• Window title
• HTML head content
• HTML body attributes
• Target frame
• JS Header
• JavaScript events
• HTML properties of code elements
• LotusScript and the Web

Lotus Domino has a variety of properties to help the programmer customize a Web application. Follow the
information provided in the following sections for tips and best practices on how to use them to suit your
application needs.

Pages and forms

Pages and forms share several common properties. In this section, we explain how to set these
properties on your Web applications.

Window title

In a Web application, the window title is the text displayed in the web browser program title bar.

Firefox Web browser window title

The window title is a hybrid property, composed of an @Formula string. This string can have different
values if the user is using Notes client or the Web. If you have a hybrid application, that has a form or
page that is used on both Notes client and the Web, you can set the window title to display a text
according to the application, using the @ClientType formula.

The following example, we illustrate how to use this property. If for example, the user is accessing the
design from the example above from a Web browser, the window title is going to be "Web document". If
the user is running the design Notes client, and that document was already saved, the title is going to be
the value of the DocTitle variable stored in a field, or, if that is a new document, that is going to display
"New document".

Document generated by Confluence on Apr 04, 2008 19:03 Page 153

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Developing+hybrid+rich+client+and+Web+client+applications

Editing the design Window title property

Important
In a Web application, the window text set in this Window title property can have its value ignored
by the Web browser. It happens when the user sets a <title> tag on the HTML head content
property of a Web application.

HTML head content

The HTML head content of a form is the HTML portion that is going to be contained into the <head> tag
of your web application. In this property, you can enter properties like meta tags, JavaScript code,
reference stylesheets and add special page attributes, including a favicon. The following figure illustrates
how to use this property.

The design HTML Head content

By using this property, you may refer to design elements hosted on your Notes database. Therefore, you
could have calls to a style sheet by using code such as in the following example:

<link rel="stylesheet" type="text/css" href="mydb.nsf/ui.css?OpenImageResource" />
<link href="favicon.ico?OpenElement" rel="shortcut icon" type="image/x-icon" />

Tip
If you have several forms with similar code on the HTML head content, consider reusing this using
the $$HTMLHead field. For more information, refer to the field documentation for $$HTMLHead on
special reserved fields.

For more information about how to invoke Domino elements on the Web using Domino URLs, refer to All
Domino URLs.

HTML body attributes

Document generated by Confluence on Apr 04, 2008 19:03 Page 154

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Special+reserved+fields
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs

The HTML head content of a form is the HTML portion that is contained into the <body> tag of a Web
application. In this form attribute, you can define properties like the page background color and some
other HTML settings. The example in the following figure illustrates how to use this property.

(Editing the HTML body attributes)

Tip
Set the Web page style properties using style sheets instead of using the HTML body attributes.
This best practice reduces the maintenance effort over a Web application.

To set other attributes like the code that goes on the <html> tag for your page, and the code that goes
before the <html> tag, refer to the field documentation for $$HTMLTagAttributes and $$HTMLFrontMatter
on special reserved fields.

Target frame

In addition to adding content to a frame, you can also target a specific frame of a frameset so that data
and links open in the target frame. If you have not specified a target frame anywhere in this hierarchy,
the link opens in the frame that contains the link. If you specify a target frame that does not exist, the
link opens in a new, top-level window. The following figure illustrates how to use this property.

Setting a value to the target frame property

Setting this property in a Web application makes all the links of a page in a frameset to be
executed/opened on another frame, by the use of a baseurl. The following example shows the code
appended on the <head> tag when this property is set on a design.

<base target="framename">

The target frame is a hybrid property, composed of an @Formula string. This string can have different
values if the user is using Notes client or the web. If you have a hybrid application that has a form or
page that is used on both Notes client and the Web, you can set the target frame to to a different frame
of your application, using the @ClientType formula.

Document generated by Confluence on Apr 04, 2008 19:03 Page 155

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Special+reserved+fields
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Developing+hybrid+rich+client+and+Web+client+applications

Important
Remember to specify a name in the Frame Properties box for any frame that is going to be a
target frame.

For further information about how to use frames and frameset, refer to Frameset design elements.

JS Header

The JS Header is property used to hold the JavaScript of a design. The following figure illustrates how to
use this property.

The JS header of a design

The JS Header is a hybrid property. If you have a hybrid application, you can have some JavaScript code
that can work on both Notes client and the Web.

Note
Not all JavaScript functionalities are available on the Notes client.

The JavaScript header code of a design is kept inside the <head> tag of a Web page. The following
example illustrates where in a Web page the JavaScript code of the JS Header is hosted.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>

<script language="JavaScript" type="text/javascript">
<!--
//HERE IS THE JS Header CODE - some JavaScript code goes just bellow
function hello() {

alert('Hello world!');
}
// --!>
</script>

</head>
<body text="#000000" bgcolor="#FFFFFF">

</body>
</html>

The JS Header section of a design has a built in JavaScript text editor that helps the programmer code.
The JS header is not available when you change the content type of a page from Notes to HTML. Make
sure your JavaScript code is being written to run the right environment, in this case, the Web. You can
set this by selecting the run property of your code or event.

Document generated by Confluence on Apr 04, 2008 19:03 Page 156

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Frameset+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Developing+hybrid+rich+client+and+Web+client+applications

The following figure illustrates how you set where a JavaScript code runs over. It is a best practice to
keep the JavaScript code on subforms, JavaScript JavaScript library design elements, or even in File
resources design elements accessed through Domino URLs.

Setting were a JS code should run

Important
Since this property is also available on subforms, make sure that you do not have duplicate parts
of JavaScript code on both your forms and subforms.

JavaScript events

An event is something that takes place over a system when an action takes place, like a mouse click or a
keyboard key press. The programmer can code most of the JavaScript events of a Web page directly on
the Domino Designer interface. The events are listed with round blue icons just below the JS Header
property of a design. The following figure illustrates all the JavaScript events available from Domino
Designer. To code an event, just select it from the list and enter the JavaScript code for that.

All the JavaScript events available at Domino Designer

The following figure illustrates where to code an event from Domino Designer. In this example, the event
is onClick. Therefore, every time a user clicks the page, an alert message is displayed. Several types of

Document generated by Confluence on Apr 04, 2008 19:03 Page 157

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/File+resources+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/File+resources+design+elements

eventscan be run on several elements, from forms and pages, to subforms, images and buttons.

Setting the code for a JavaScript event

Note
Some of these events are not available on subforms.

The following JavaScript is available from the Designer interface:

• onLoad: Occurs immediately after a page or an image is loaded.
• onUnload: Occurs when a user exits a page.
• onClick: Occurs when an object gets clicked.
• onDblClick: Occurs when an object gets double-clicked.
• onKeyPress: Occurs when a keyboard key is pressed or held down.
• onKeyUp: Occurs when a keyboard key is released.
• onMouseDown: Occurs when a mouse button is clicked.
• onMouseMove: Occurs when the mouse pointer is moved.
• onMouseOut: Occurs when the mouse pointer moves away from a specified object.
• onMouseOver: Occurs when the mouse pointer moves over a specified object.
• onMouseUp: Occurs when a mouse button is released.
• onReset: Occurs when the reset button in a form is clicked.
• onSubmit: Occurs when the submit button in a form is clicked or when the Web forms are

submitted.

Tip
You can use @Formula language to write any JavaScript event handler for your page. To achieve
this, write your event code into the HTML body attributes attribute of your design.

The following figure illustrates how to use an event handler on the HTML body attributes property.
We recommend this approach for small pieces of JavaScript code that needs to take advantage of
the @Formula language. @Formulas string are server-side scripts, and require more server
performance than client-side JavaScript plain text hosted on the JS Header, events of JavaScript
libraries.

Using HTML body attributes to set events

For further information about how to use JavaScript and its events, refer to JavaScript.

HTML properties of code elements

Document generated by Confluence on Apr 04, 2008 19:03 Page 158

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer

You can set diverse HTML properties and attributes to several code elements, like images, buttons, or
fields to adapt it to your Web application needs. These attributes goes from HTML name to CSS class. To
change these properties on a code element, go on its properties box, and in the HTML tab set your own
properties. The following figure shows how to set diverse properties for a field on Designer.

Setting the HTML properties of the Name field

If the following properties are set for a field, Domino creates the following HTML for that:

<input name="Name" value="" id="myField" class="inputTextStyle" style="font-size:14px;"
title="Name" size="20">

Any attribute that is not listed on the property using a field can be entered as free text on the Other field
(just like size="20" property entered in the previous example. This property is specially useful when
using Web page elements using Domino resources, and not pass-through HTML.

For further information about HTML attributes, refer to HTML primer.

LotusScript and the Web

LotusScript does not run on the Web interface. To trap events on a Web environment, you need to use
JavaScript events. If an application has some LotusScript events that need to run on an application on
both client and the Web, the programmer should find a way to make the best adaptation of that code to
JavaScript language. JavaScript offers several user interface features available on both Notes and the
Web, but a set of the LotusScript functions does not have an equivalent on JavaScript, since some of
them are related to the Notes user interface. The only way to run LotusScript on the web is using
WebQueryOpen and WebQuerySave agents in back-end. For further information about WebQueryOpen
and WebQuerySave agents, refer to using WebQueryOpen and WebQuerySave agents.

Document generated by Confluence on Apr 04, 2008 19:03 Page 159

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements

Styling text for the Web

This page last changed on Apr 03, 2008 by jservais.

• Styling text for the Web
• Fonts
• Size
• Preserving spaces
• Text colors

Styling text for the Web

Lotus Domino automatically converts its text styles to HTML on the the design body when there is a
corresponding HTML equivalent. Bullets, numbers, alignment (except Full Justification and No Wrap),
spacing, and named styles are examples of HTML equivalents. Certain types of Notes formatting, such as
indents, interline spacing, and tabs are not translated on the Web page code when viewed from a Web
browser because there is no HTML corresponding format. Be aware that different browsers may display
tags differently, and that not all browsers support the HTML tags that Domino generates.

Fonts

If the fonts used are not the system defaults (in Windows, Default Sans Serif and Default Serif), Domino
converts font instructions to the HTML tag and FACE= attribute to approximate the original font
choice. Text may look different to a Web user than it does to a Notes user because the browser
determines which fonts to use.

Tip
Domino does not use CSS or tags to translate any of its content. Programmers should
use pass-thru HTML if they want proper tags generated on their code.

Size

Domino maps the text size you select in Domino Designer to an HTML text size. The following table lists
the text size in Lotus Notes and the corresponding HTML size. Note that Domino does not map font sizes
to HTML heading tags (H1, H2, and so on).

Notes text size less than or equal to Maps to HTML size

7 1

9 2

11 3 (default size)

Document generated by Confluence on Apr 04, 2008 19:03 Page 160

13 4

17 5

23 6

greater than 23 7

Preserving spaces

To align a column of numbers or to preserve or insert spaces, use the default monospaced font. On a
Windows system, the default monospaced font is Courier. Domino converts the default monospaced font
to a monospaced font on the Web and preserves any spaces you enter.

Text colors

Web users see the same approximate text colors as Notes users, but the colors may not match exactly.

Document generated by Confluence on Apr 04, 2008 19:03 Page 161

Working with the DOCTYPE

This page last changed on Apr 03, 2008 by jservais.

In this section, we discuss the various uses of the DOCTYPE declaration for both Standards-based Web
Development and its utilization in Domino Web development best practices.

Setting DominoCompleteDoctype

You can change the DOCTYPE of the HTML pages Domino generates by changing an entry in the Domino
server's notes.ini file.

Using DominoCompleteDoctype

This setting does not cause Domino to change the HTML it creates. It only changes the DOCTYPE
line in the head section of the HTML page.

Set the DominoCompleteDoctype environment variable in notes.ini or preferably in a configuration
document in the Domino Directory. It has three different values:

• 0 = <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
• 1 = <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">
• 2 = <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

A value of 0 or no entry, is the default and leaves the browsers in quirks mode. A value of 1 or 2 puts the
browser into standard compliance mode. If you are including Domino generated controls, then use 1,
because a value of 2 causes validation errors.

Compliance mode and CSS

When the browser is in standard compliance mode, the CSS selectors become case-sensitive.

Example HTML:
<div id="frame">

The following CSS selector does not work:

#Frame {...}

The following CSS selector works:

Document generated by Confluence on Apr 04, 2008 19:03 Page 162

#frame {...}

For information about how to change the content type of a design element, refer to Changing the content
type of a design element

Document generated by Confluence on Apr 04, 2008 19:03 Page 163

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element

Agent design elements

This page last changed on Apr 03, 2008 by jservais.

• Notes agents
• WebQueryOpen
• WebQuerySave

Notes agents

Agents are the workhorse of Lotus Notes. They can be run in the foreground or backround, Notes client,
Web client, or server.

When working with agents, consider the following.

• For long running agents, consider running on the server on a scheduled basis. If it is an absolute
requirement to run on a Notes Client, run them in the background so the user is not locked out.

• For the Web, use agents sparingly, for the following reasons:

• ° Agents on the Web are run using the HTTP task. Too many agents or long running agents
cause a performance hit and may delay response time to Web browsers.

° A separate thread is required for each agent, which uses up server resources.
° An agent context must be created and destroyed each time an agent is run, further using up

server resources.

WebQueryOpen

A WebQueryOpen event runs an agent via the @CommandToolsMacro command. The timing is such that
the agent is called and run prior to Domino rendering the document to HTML and sending it to the Web
browser.

WebQueryOpen agents only run when the user opens a form or document and are not run when the user
saves a document. Be aware that any changes the WebQueryOpen agent makes to such fields are not
saved when the user submits the document. You can either recalculate them in the WebQuerySave agent
or set the form property "Generate HTML for all fields" to ensure you get the results you expect.

Domino ignores any output produced by an agent run by the WebQueryOpen event.

WebQuerySave

A WebQuerySave event runs an agent via the @CommandToolsMacro command. The timing is such that

Document generated by Confluence on Apr 04, 2008 19:03 Page 164

the agent is called after field input validation formulas are run and before the document is actually saved
to disk. The document is automatically saved after the agent runs whether you explicitly save the
document or not. We recommend that you do not explicitly save the document in the agent, because this
can cause replication or save conflicts.

If you want the form to not be saved automatically, use the SaveOptions field. Create the field on the
form first, and set it to 0 (false). The agent can change the value of the field if you want. Be aware that if
you rely on the agent to entirely create the field, it does not work as expected.

A WebQuerySave agent can produce output to be sent back to the user via the LotusScript print
statement. This statement can send a string that consists of an entire HTML page if you wish. For large
strings with consistent and static HTML, such as a header, navigation or footer, you can store the such
HTML in fields in your form, and then reference them while building your output string.

If the form has a $$Return field, it is ignored by Domino and the only output is from the query save
agent.

Document generated by Confluence on Apr 04, 2008 19:03 Page 165

Applet design elements

This page last changed on Apr 04, 2008 by dalandon.

• Introduction
• Creating an applet
• Inserting an applet
• Further information

Introduction

As stated in the primer section, an applet is a small non-standalone Java program. When an applet is
loaded from a notes design element, either in the Notes client or Web client, the applet code is
downloaded on the user's machine and subequently run.

An applet can be contained in several Notes design elements:

• Form: The applet is included in each document created with that form.
• Document: The applet is available only in the document.
• Page: The applet is available only in the page.

To include an applet into an application, you must first do the following actions:

• Enable Java applets on your workstation (Notes client only)
• Import the applet or link to an applet on the Web
• Set the applet parameters and attributes in the properties box of the applet.

Creating an applet

You cannot directly create applets in Domino Designer, as its Java IDE is limited in regards to this
capability. You must create the applet in an external Java IDE and then import the class file or files for
the applet into the Domino Database. To do the import, go to the Shared Resources section of the
database in Domino Designer, and click Applets to open the design pane. Then click the New Applet
Resource action button. The Locate Java Applet Files window opens (see the following figure).

Document generated by Confluence on Apr 04, 2008 19:03 Page 166

After you select the directory from your file system, select the proper files and click either of the
Add/Replace buttons to include them in the applet resource. You are prompted to give the resource a
name, and then you are done.

You can use other Java resources/filetypes for your applet, for example:

• Class files (*.CLASS)
• Archive files (*.JAR, *.ZIP, *.CAB)
• Resource (*.JPG, *.JPEG, *.GIF, *.AU)
• Source (*.JAVA)

When selecting files, select the archive files, or, class file or files and resource files that are needed to
execute the main applet class. Source files are not needed unless you plan to send the applet to another
user who wants to export them and change the applet.

Inserting an applet

You can insert an applet into a notes design element and specify one of three sources.

• Local file system
• Domino Designer applet shared resource
• Web URL

Document generated by Confluence on Apr 04, 2008 19:03 Page 167

When inserting an applet into a Notes element, in Domino Designer click Create followed by Java
Applet. The Create Java Applet window opens (see the following figure).

You can specify that the applet comes directly from files on the file system or a shared resources (as
created previously). The first window is used to directly specify files from your file system. If you want to
use a shared resource, click on Locate. If you click Locate, the following window opens to assist you in
selecting your files, either from your file system or from a shared resource.

Document generated by Confluence on Apr 04, 2008 19:03 Page 168

Inserting from the file system or shared resource

If you are inserting an applet that is packaged as a JAR file, ensure that you specify the correct class
name for the main class file of the applet. Browsing for the JAR file inserts the filename with a "class"
extension in the class name field. If the file name and the main applet class name are the same, this is
fine, but if it is not, then you must edit the class name field to be the correct class to be loaded when the
applet runs.

Inserting from the Web

In the Create Java Applet window, select Link to an applet on a Web server. In the base URL field,
enter the URL where the applet files are stored. Do not specify the document that references the applet.
Specify the location of the main applet class file as shown in the following example:

http://<web server url>/<applet directory>/<applet class name only, with no filetype>

In the Base class name field, enter the name of the main class. Note that Java is case-sensitive to file
names.

Further information

Applets can provide rich visual functionality to any application. Take the time to research and sample
their use, and decide whether its right for your Domino application.

Document generated by Confluence on Apr 04, 2008 19:03 Page 169

Document generated by Confluence on Apr 04, 2008 19:03 Page 170

Design element multi-aliasing

This page last changed on Apr 04, 2008 by dalandon.

• What is Design Element Multi-Aliasing?
• Examples of DEMA in Domino Web application development

In this section, we discuss the application of multiple aliases to the Domino design elements to both
alleviate the need for duplicate like-design Domino design elements and the leveraging of more advanced
common design element architectures.

What is Design Element Multi-Aliasing?

Design Element Multi-Aliasing (DEMA) is the application of additional aliases to specific Domino design
elements. The Domino Designer Client allows us to enter a vertical pipe (|) character to separate the
Common Name or Displayed Name of a design element and the design element's programmatic name.
The following example shows the common naming schema for Domino Form Design Elements.

Form Element Display Name|programmatic_element_name

There is an effective and functional aspect to this naming schema. The Notes documents that are created
with the Form Element Display Name Form Design Element store the "programmatic_element_name" as
the value of the Notes Document's Form Notes Item.

We have the ability to create multiple aliases between the Display/Common Name of the design element
and its programmatic name as shown in the following example:

Form Element Display Name|other_element_name|programmatic_element_name

This is an elementary example of a method that, when applied, can allow you to use individual Domino
design elements far beyond their original intentions. In the next section, we discuss several real-world
examples of DEMA.

Examples of DEMA in Domino Web application development

Share your examples and best practices.

Document generated by Confluence on Apr 04, 2008 19:03 Page 171

File resources design elements

This page last changed on Apr 01, 2008 by jservais.

In certain situation, you might need to reference external files that are created with a non-Lotus Notes
software. For example, a company might have an HTML file that somebody else maintains, but it needs to
be a part of the Web application. You can use the File Resources design element to reference these type
of files. After you add the external file, you can refresh the file by clicking the Refresh button when the
external file changes.

The second tab has options that are only applicable to Web applications.

• Read Only: Checking this option causes the selected design element(s) to be read only on the Web.
• MIME type: This refers to the MIME type of the file resource for Web clients. The Content-Type

header of the HTTP response is set to this value. Domino Designer fills in this field if it recognizes
the extension of the file resource (for example, a GIF image file or an EXE application file).

Document generated by Confluence on Apr 04, 2008 19:03 Page 172

Folder design elements

This page last changed on Apr 01, 2008 by jservais.

In this section, we discuss the folder design element and its proper and extended usage in our
development practices. We assume that you have a basic understanding of the folder design element and
focus more on how we can use this design element in our Web application development.

What is a folder

The folder design element is used to create both visual and functional structures for Notes Document
Collections. Unlike the View Design Element, the folder design element is a container element that stores
Notes documents.

Since the folder design element is a container element, Notes documents must be put in or removed from
the element. With the advent of Folder References, Notes documents can now track folder location
information in the form of Notes Items ($FolderRef, $FodlerRefFlags, $FolderRefID) in the Notes
document context.

Document generated by Confluence on Apr 04, 2008 19:03 Page 173

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements

Form design elements

This page last changed on Apr 04, 2008 by dalandon.

• Introduction
• Form properties
• Differences between pages and forms
• Form naming best practices
• User input validation
• Other topics

Introduction

Forms are design elements used to hold the information submitted into a database. A form gets rendered
on the Web just as a common Web page and is used to hold content similar to the page design element.
A form may also be used to control how a view gets displayed or searched on the web, using view
templates or search templates. Forms can hold formatted text, graphics and embedded controls, such as
outlines and applets. Different from Page design elements, forms can also hold fields and subforms. To
learn how to control how your design is going to look on the Web, refer to Styling text for the Web.

A form design element open in Domino Designer

Document generated by Confluence on Apr 04, 2008 19:03 Page 174

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SearchTemplate
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styling+text+for+the+Web

The following table describes each of the Domino design elements that can be used on forms on the Web.

Elements to use on a form Description

Actions Actions automate tasks for the user. Add actions
to the menu in the Notes client, or add actions
with buttons or hotspots on a page or form. For
more information, refer to actions.

Applets Use Java applets to include small programs, such
as an animated logo or a self-contained
application, in a page or form. For more
information about including Java applets on a page
or form, refer to Applet design elements

Attachments Attach files to a page or form so users can detach
or launch files locally. For more information, refer
to file attachments.

Automation You can create form actions, buttons, or hotspots
on a form, subform, or page to automate simple or
complex tasks.

Computed text Use computed text to generate dynamic text
based on formula results.

Embedded elements You can embed the following elements in a page
or form: a view or folder pane, navigator, outline
or instant messaging contact list. Forms can also
embed the file upload, and editor. Use these
elements alone or combine them to control how
users navigate through your application.

Fields Fields are the design elements that collect data.
You can create fields only on forms or subforms.
Each field on a form stores a single type of
information. A field's field type defines the kind of
information a field accepts. You can place fields
anywhere on a form. For more information about
fields, refer to fields.

Graphics Place a graphic anywhere on a page or form. Use
graphics to add color to a page or form or to
create imagemaps.

Horizontal rules Add horizontal rules to separate different parts of
a page or form, or to make a page or form more
interesting visually.

HTML If you have existing HTML or you prefer using
HTML to using the formatting tools Domino
Designer offers, you can import, paste or write
your own html on a page or form. You can also
convert pages and forms to HTML.

Imagemaps An image map is a graphic you enhance with
programmable hotspots. Hotspots, in the form of
pop-up text, actions, links, and formulas, perform
an action when clicked by a user. Use imagemaps

Document generated by Confluence on Apr 04, 2008 19:03 Page 175

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Adding+HTML+to+a+design
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Adding+HTML+to+a+design

as navigational structures in an application.

JavaScript libraries You can find and insert JavaScript libraries into a
page, form or subform. For more information on
inserting JavaScript libraries, refer to JavaScript
library design elements.

Layers Layers let you position overlapping blocks of
content on a page, form, or subform. Layers give
you greater design flexibility because you can
control the placement, size, and content of
information. For more information on layers, refer
to Layers.

Links Add links to take users to other pages, views,
databases, or URLs when they click on text or a
graphic.

Sections A section is a collapsible and expandable area that
can include objects, text, and graphics.

Shared resources The following shared resources can be added to a
form or subform: Image resource design
elements, JavaScript libraries, Shared field design
elements, subforms, style sheets and HTML Files.

Style Sheet (CSS) shared resources You can find and insert a cascading style sheet
(CSS) as a shared resource on a page, form, or
subform. For more information on style sheets,
refer to style sheets.

Subforms A subform is a collection of form elements stored
as a single object. A subform can be a permanent
part of a form or can appear conditionally,
depending on the result of a formula. Subforms
save redesign time. When you change a field on a
subform, every form that uses the subform
changes. Common uses of subforms include
adding a company logo to business documents or
adding mailing label information to mail and memo
forms. For more information about subforms, refer
to subforms.

Tables Use tables to summarize information, align text
and graphics in rows and columns, or position
elements on a page or form.

Text Use text anywhere on a page or form and apply
text attributes, such as color, size, and font styles
to the text.

Tip
Layout regions are not supported on the Web. Consider using layers or div tags with CSS styles
instead.

Form properties

Document generated by Confluence on Apr 04, 2008 19:03 Page 176

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Image+resource+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Shared+field+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Shared+field+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer

Forms are displayed on the Web with all its fields enclosed by an HTML <form> tag. Forms have a set of
properties that can impact the user experience on the Web. Refer to other web specific database
properties and their effects for further information.

Differences between pages and forms

Both forms and pages are displayed on the web as web-pages (unless the user decides to change the
page content type), but the main difference between them are that pages do not store data entered by
the user. Fields, subforms, layout regions, and some embedded controls can only be used on forms.
There are also some other differences and best practices when using pages and forms. Refer to Using
forms versus pages for further information.

Form naming best practices

Forms can be named using the Design element multi-aliasing technique. Using this we can have a form
called "Top rated product vendor|vendor.htm|vendor". This naming convention also brings the benefit of
have an alias that works like a traditional Web server "file name" for Domino URLs, helping keeping
aliases even if the main page content changes. This also helps search crawlers increase the page rank by
using the search engine optimization best practice of having a small description of the page on its URL.
This practice is explained more detailed on the search engine optimization section.

User input validation

There are several techniques to validate user input validation on the Web. These techniques can be
applied on client side using JavaScript. We strongly recommend that you use server side validation. For
further information, refer to the following topics:

• Input validation - Server side
• Input validation - Client side

Other topics

• HTMLOptions and HTMLTagAttribute fields
• Special reserved fields
• Understanding the form HTML source code
• Using forms versus pages

Document generated by Confluence on Apr 04, 2008 19:03 Page 177

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+forms+versus+pages
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+forms+versus+pages
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Design+element+multi-aliasing
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Search+engines+and+search+engine+optimization
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Input+validation+-+Server+side
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Input+validation+-+Client+side
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTMLOptions+and+HTMLTagAttribute+fields
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Special+reserved+fields
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+form+HTML+source+code
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+forms+versus+pages

HTMLOptions and HTMLTagAttribute fields

This page last changed on Apr 01, 2008 by jservais.

• Handling HTML code generation
• Controlling the HTML front matter generated for a form

Handling HTML code generation

With Release 8, Lotus Domino offers the possibility to change the HTML generated for a form and for its
fields. These options are not related to the page HTML itself, but on how how the Domino server creates
the HTML code for the field into HTML, and how that field's input is processed.

HTML options are indicated by a list of name=value pairs. The name consists of alphanumeric characters
(letters, numbers, underscore, dash), and indicates the option that is being set. The value is a number,
and indicates the setting of that option. The HTML options for a form are stored in a Computed for
Display text field, that must be called $$HTMLOptions. If more than one HTML option/value has to be set
for a form, the field must be set to allow multiple values. Field-level HTML options override form-level
HTML options.

The following table list the options that are available.

Option name Option action

DisablePassThruHTML Disables passthru HTML, treating the HTML as
plain text.

ForceSectionExpand Forces all sections to be expanded, regardless of
their expansion in the Notes rich text fields.

ForceOutlineExpand Forces all outlines to be expanded, regardless of
their expansion in the Notes rich text.

RowAtATimeTableAlt Forces alternate formatting of tables with tabbed
sections. All of the tabs are displayed at the same
time, one below the other, with the tab labels
included as headers.

TextExactSpacing Preserves Notes intraline white space (spaces
between characters).

Controlling the HTML tag attributes generated for a form

The HTML tag attributes are the optional attributes that are included inside the <html> tag of a Web
page. On Domino Release 8, designers have the ability to define the attributes for this tag. HTML tag
attributes for a form are stored in a hidden Computed for Display text field, that must be called
$$HTMLTagAttributes. Specify the value of this field inside quotation marks. For example, specifying the

Document generated by Confluence on Apr 04, 2008 19:03 Page 178

value "lang=en" produces the following code for that <html> tab in the resulting HTML:

<html lang=en>

Controlling the HTML front matter generated for a form

The HTML front matter consists of an optional <!DOCTYPE> tag that appears before the <html> tag of a
document displayed on the Web. On Domino Release 8, designers have the ability to control these
attributes. HTML front matter information for a form is stored in a hidden Computed for Display text field,
that must be called $$HTMLFrontMatter.
Specify the value of this field inside quotation marks, and include the statement inside an unique value.
For example, this code specifies if an HTML document should be viewed with strict or transitional
encoding, depending on the value of a field on the form named Mode.

@If(Mode="Strict";
"<!DOCTYPE HTML PUBLIC" + @NewLine + "\"-//W3C//DTD HTML 4.01\"" + @NewLine +
" \"http://www.w3.org/TR/REC-html40.strict.dtd\">" +
@NewLine; "")

Document generated by Confluence on Apr 04, 2008 19:03 Page 179

Special reserved fields

This page last changed on Apr 01, 2008 by jservais.

Lotus Domino Designer provides predefined fields with some built-in functionalities to facilitate users. For
example, to design a form with e-mail options, you add predefined mail fields such as SendTo and
CopyTo to a mail form. Designer automatically recognize these special fields and offers interaction with
the server to send the message.
If a reserved name field is used in a way that is different from its original intended use or redefine the
field, Designer displays an error message.

Reserved names for embedded elements

Reserved field name Contains

$$ViewBody An embedded view.

$$ViewList An embedded folder pane.

$$NavigatorBody An embedded navigator.

$GroupScheduleRefreshMode A value for refreshing an embedded group
scheduling control.

$GroupScheduleShowLegend A value of 0 or 1. If the value is 0, the color
legend does not display. If the value is 1, the color
legend does display. The default is 1.

Reserved fields for use in billing applications

Reserved field name Creates a billing record when a user

$ChargeRead Opens a document that contains this field.

$ChargeWrite Creates, copies, edits, or saves a document that
contains this field.

Reserved fields for general use

Reserved field name Use

Categories Categorizes documents.

$VersionOpt Controls version tracking for documents.

FolderOptions Puts new documents in folders.

SecretEncryptionKeys Encrypts documents with secret, rather than
public, encryption keys.

HTML Passes HTML directly to the server.

$$HTMLHead Passes HTML information to be hosted within the

Document generated by Confluence on Apr 04, 2008 19:03 Page 180

<HEAD> tag for a document. The passed
information might be meta data (using a <META
...> tag) or JavaScript code (using a <SCRIPT ...>
tag) or CSS information (using a <STYLE ...> tag).

$$Return After Web users submit a document, Domino
responds with the default confirmation "Form
processed." To override the default response, add
a computed text field to the form, name it
$$Return, and use HTML as the computed value to
create a customized confirmation.

Visit the following links for information $$HTMLOptions, $$HTMLTagAttribute, $$HTMLFrontMatter and
$$Return.

Reserved fields for mail

Reserved Field name Values Comments

BlindCopyTo The name(s) of a person, group,
or mail-in database.

CopyTo The name(s) of a person, group,
or mail-in database.

DeliveryPriority L, N, H Values correspond to: Low,
normal, or high-priority.

DeliveryReport N, B, C, T Values correspond to: None,
Only on failure, Confirm delivery,
Trace entire path

Encrypt 1, 0 Use 1 to encrypt mailed
documents.

MailFormat B, E, M, T Enables cc:Mail users to view
Notes documents in a variety of
predefined formats:
B = both text and encapsulated.
E = encapsulated in a Notes
database, which is attached to
the cc:Mail memo.
M = mail. Body field of document
is text and pasted into cc:Mail
memo.
T = text. Contents of the
document are rendered as text
and pasted into the body of the
cc:Mail memo.

MailOptions 1, 0 Use 1 for automatic mailing.

ReturnReceipt 1, 0 Use 1 to send a receipt when
document is opened by the
recipient.

SaveOptions 1, 0 Use 1 to save mailed documents.

Document generated by Confluence on Apr 04, 2008 19:03 Page 181

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTMLOptions+and+HTMLTagAttribute+fields

Use 0 so that the document is
not saved when mailed. prevent
the document from being saved.

SendTo The name(s) of a person, group,
or mail-in database.

Required for all forms that mail
documents.

Sign 1, 0 Use 1 to an add electronic
signature to fields. (Only
applicable if a form also contains
sign-enabled fields.)

Document generated by Confluence on Apr 04, 2008 19:03 Page 182

Understanding the form HTML source code

This page last changed on Apr 03, 2008 by jservais.

Understanding the form HTML source code

Lotus Domino forms are not identical when presented on Lotus Notes and the Web. Some minor changes
appears on some field types in order to suit all types and formats to a corresponding HTML input. In this
section, we go through the field types and explain its HTML translation. Refer to working with HTML in
Domino for further information about HTML.

Form on Domino Designer

Document generated by Confluence on Apr 04, 2008 19:03 Page 183

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+HTML+in+Domino
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+HTML+in+Domino

Form on Notes client

Document generated by Confluence on Apr 04, 2008 19:03 Page 184

Form on the Web browser

Important
The input tags that are generated by Domino are not according to W3C standards. When an HTML
tag that does not have a closing tag (e.g.: <select>...</select>), the programmer must to add a
closing tag to keep the mark-up "well formed" (e.g.: <input />). Since Domino generates the
HTML code translation itself, there is no way to handle this issue. This issue is fixed on Domino
release 8.5. Refer to W3C for further information about HTML language standards.

Text

The following example exemplifies the HTML code generated for Notes text fields translated to HTML on
the Web:

Document generated by Confluence on Apr 04, 2008 19:03 Page 185

http://www.w3.org

<tr><td>Text: </td><td>
<input name="Text" value=""></td></tr>

The tag used for this field type is <input>, with no type attribute set. If the field already has a value, its
contents are held on the value property.

Tip
Do not use New lines as a multi-value separator for this field type on the Web. That is because
there is no way for the user to enter new lines on input text fields on the Web.

Date/Time

The following example exemplifies the HTML code generated for Notes date/time fields translated to
HTML on the Web:

<tr><td>Date: </td><td>
<input name="Date" value=""></td></tr>

The tag used for this field type is <input>, with no type attribute set. If the field already has a value, its
contents are held on the value property using the server date formatting. If a non-date/time value is
entered, Domino indicates an error.

Tip
Do not use New lines as a multi-value separator for this field type on the Web, because there is
no way for the user to enter new lines on input text fields on the Web.

Number

The following example exemplifies the HTML code generated for Notes number fields translated to HTML
on the Web:

<tr><td>Number: </td><td>
<input name="Number" value=""></td></tr>

The tag used for this field type is <input>, with no type attribute set. If the field already has a value, its
contents are held on the value property. If a non-numeric value is entered, Domino raises an error.

Tip
Do not use New lines as a multi-value separator for this field type on the Web because there is no
way for the user to enter new lines on input text fields on the Web.

Dialog box

The following example exemplifies the HTML code generated for Notes dialog box fields translated to
HTML on the Web:

Document generated by Confluence on Apr 04, 2008 19:03 Page 186

<tr><td>Dialog: </td><td>
<input name="%%Surrogate_Dialog" type="hidden" value="1">
<select name="Dialog">
<option>Option1
<option>Option2</select>
</td></tr>

Just like a combo box, the tag used for this field type is <select>. The options are enclosed by the
<option> tag. If the field already has a value, the selected option raises the selected property. The value
property is only used in case aliases are used on the field options.

Note
The %%Surrogate_... input is generated automatically for this field type just to support the
Domino server with internal computations.

Checkbox

The following example exemplifies the HTML code generated for Notes checkbox fields translated to HTML
on the Web:

<tr><td>Checkbox: </td><td>
<input name="%%Surrogate_Checkbox" type="hidden" value="1">
<input type="checkbox" name="Checkbox" value="Option1">Option1

<input type="checkbox" name="Checkbox" value="Option2">Option2</td></tr>

The tag used for this field type is <input>, with type property set to check box. The tag is repeated for
every option. Check boxes can have multiple values. In case of aliases, the text enclosed by the <input>
tag is the alias, and the value property holds the value. The columns option separator is the
 tag. If
the field already has a value, the selected option raises the selected property.

Note
The %%Surrogate_... input is generated automatically for this field type just to support the
Domino server with internal computations.

Radio button

The following example exemplifies the HTML code generated for Notes radio button fields translated to
HTML on the Web:

<tr><td>Radio: </td><td>
<input name="%%Surrogate_Radio" type="hidden" value="1">
<input type="radio" name="Radio" value="Option1">Option1

<input type="radio" name="Radio" value="Option2">Option2</td></tr>

The tag used for this field type is <input>, with type property set to radio. The tag is repeated for every
option. In case of aliases, the text enclosed by the <input> tag is the alias, and the value property holds
the value. The columns option separator is the
 tag. If the field already has a value, the selected
option raises the selected property.

Note

Document generated by Confluence on Apr 04, 2008 19:03 Page 187

The %%Surrogate_... input is generated automatically for this field type just to support the
Domino server with internal computations.

Listbox

The following example exemplifies the HTML code generated for Notes listbox fields translated to HTML on
the Web:

<tr><td>Listbox: </td><td>
<input name="%%Surrogate_Listbox" type="hidden" value="1">
<select name="Listbox">
<option>Option1
<option>Option2</select>
</td></tr>

Just like a combo box, the tag used for this field type is <select>. The options are enclosed by the
<option> tag. If the field already has a value, the selected option raises the selected property. The value
property is only used in case aliases are used on the field options. List boxes can have multiple values. In
this case, it is rendered with the property multiple set.

Note
The %%Surrogate_... input is generated automatically for this field type to support the Domino
server with internal computations.

Combobox

The following example exemplifies the HTML code generated for Notes combobox fields translated to
HTML on the Web:

<tr><td>Combobox: </td><td>
<input name="%%Surrogate_Combobox" type="hidden" value="1">
<select name="Combobox">
<option>Option1
<option>Option2</select>
</td></tr>

The tag used for this field type is <select>. The options are enclosed by the <option> tag. If the field
already has a value, the selected option raises the selected property. The value property is only used in
case aliases are used on the field options.

Note
The %%Surrogate_... input is generated automatically for this field type to support the Domino
server with internal computations.

Richtext

The following example exemplifies the HTML code generated for Notes richtext fields translated to HTML
on the Web:

Document generated by Confluence on Apr 04, 2008 19:03 Page 188

<tr><td>Rich text: </td><td>
<textarea name="Richtext" rows="7" cols="50"></textarea>
</td></tr>

The tag used for this field type is <textarea>. Its text values are enclosed between the beginning and
closing tag. If the field already has a value, its contents are held on the value property.

Important
All the rich text formats entered on a rich text field are lost if a document is saved on the Web
(text is converted to plain/unformatted text). The file attachments are still held on the document,
and are accessible by using the /$FILE/filename Domino URL. For further information about file
attachments on the Web, refer to file attachments.

Password

The following example exemplifies the HTML code generated for Notes password fields translated to HTML
on the Web:

<tr><td>Password: </td><td>
<input name="Password" value="" type="password"></td></tr>

The tag used for this field type is <input>, with type attribute set to password. If the field already has a
value, its contents are held on the value property using the server date formatting. If a non-date/time
value is entered, Domino raises an error.

Important
Despite the fact that Web browser masks the passwords using the operating system password
field masks, the value property of this field is rendered in plain text on the source code if the
document is already saved.

Timezone

The following example exemplifies the HTML code generated for Notes timezone fields translated to HTML
on the Web:

<tr><td>Timezone: </td><td>
<select name="Timezone">
<option value="Z=12$DO=0$ZN=Dateline$ZX=129">(GMT-12:00) International Date Line West
<option value="Z=11$DO=0$ZN=Samoa$ZX=130">(GMT-11:00) Midway Island, Samoa
<option value="Z=10$DO=0$ZN=Hawaiian$ZX=131">(GMT-10:00) Hawaii
<option value="Z=9$DO=1$DL=3 2 1 11 1 1$ZN=Alaskan$ZX=132">(GMT-09:00) Alaska
<option value="Z=8$DO=1$DL=3 2 1 11 1 1$ZN=Pacific$ZX=133">(GMT-08:00) Pacific Time (US &
Canada)
<option value="Z=8$DO=1$DL=4 1 1 10 -1 1$ZN=Pacific (Mexico)$ZX=134">(GMT-08:00) Tijuana, Baja
California
<option value="Z=7$DO=0$ZN=US Mountain$ZX=135">(GMT-07:00) Arizona
<option value="Z=7$DO=1$DL=4 1 1 10 -1 1$ZN=Mountain Mexico$ZX=136">(GMT-07:00) Chihuahua, La
Paz, Mazatlan
<option value="Z=7$DO=1$DL=3 2 1 11 1 1$ZN=Mountain$ZX=137">(GMT-07:00) Mountain Time (US &
Canada)
<option value="Z=6$DO=0$ZN=Central America$ZX=138">(GMT-06:00) Central America, Saskatchewan
<option value="Z=6$DO=1$DL=3 2 1 11 1 1$ZN=Central$ZX=139">(GMT-06:00) Central Time (US &
Canada)

Document generated by Confluence on Apr 04, 2008 19:03 Page 189

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs

<option value="Z=6$DO=1$DL=4 1 1 10 -1 1$ZN=Central Mexico$ZX=140">(GMT-06:00) Guadalajara,
Mexico City, Monterrey
<option value="Z=5$DO=0$ZN=SA Pacific$ZX=141">(GMT-05:00) Bogota, Indiana (East), Lima, Quito,
Rio Branco
<option value="Z=5$DO=1$DL=3 2 1 11 1 1$ZN=Eastern$ZX=142" selected>(GMT-05:00) Eastern Time
(US & Canada)*
<option value="Z=3004$DO=0$ZN=Venezuela$ZX=143">(GMT-04:30) Caracas
<option value="Z=4$DO=1$DL=3 2 1 11 1 1$ZN=Atlantic$ZX=144">(GMT-04:00) Atlantic Time (Canada)
<option value="Z=4$DO=0$ZN=SA Western$ZX=145">(GMT-04:00) La Paz
<option value="Z=4$DO=1$DL=10 2 1 2 3 1$ZN=Central Brazilian$ZX=146">(GMT-04:00) Manaus
<option value="Z=4$DO=1$DL=10 2 7 3 2 7$ZN=Pacific SA$ZX=147">(GMT-04:00) Santiago
<option value="Z=3003$DO=1$DL=3 2 1 11 1 1$ZN=Newfoundland$ZX=148">(GMT-03:30) Newfoundland
<option value="Z=3$DO=1$DL=10 2 1 2 3 1$ZN=E. South America$ZX=149">(GMT-03:00) Brasilia
<option value="Z=3$DO=0$ZN=SA Eastern$ZX=150">(GMT-03:00) Buenos Aires, Georgetown
<option value="Z=3$DO=1$DL=4 1 1 10 -1 1$ZN=Greenland$ZX=151">(GMT-03:00) Greenland
<option value="Z=3$DO=1$DL=10 1 1 3 2 1$ZN=Montevideo$ZX=152">(GMT-03:00) Montevideo
<option value="Z=2$DO=1$DL=3 -1 1 9 -1 1$ZN=Mid-Atlantic$ZX=153">(GMT-02:00) Mid-Atlantic
<option value="Z=1$DO=1$DL=3 -1 1 10 -1 1$ZN=Azores$ZX=154">(GMT-01:00) Azores
<option value="Z=1$DO=0$ZN=Cape Verde$ZX=155">(GMT-01:00) Cape Verde Is.
<option value="Z=0$DO=1$DL=3 -1 1 10 -1 1$ZN=GMT$ZX=157">(GMT) Greenwich Mean Time : Dublin,
Edinburgh, Lisbon, London
<option value="Z=0$DO=0$ZN=Greenwich$ZX=156">(GMT) Casablanca, Monrovia, Reykjavik
<option value="Z=-1$DO=1$DL=3 -1 1 10 -1 1$ZN=W. Europe$ZX=158">(GMT+01:00) Amsterdam, Berlin,
Copenhagen, Madrid, Paris, Rome, Stockholm, Vienna, Warsaw
<option value="Z=-1$DO=0$ZN=W. Central Africa$ZX=159">(GMT+01:00) West Central Africa
<option value="Z=-2$DO=1$DL=3 -1 5 9 -1 6$ZN=Jordan$ZX=160">(GMT+02:00) Amman
<option value="Z=-2$DO=1$DL=3 -1 1 10 -1 1$ZN=GTB$ZX=161">(GMT+02:00) Athens, Bucharest,
Istanbul, Helsinki, Kyiv, Riga, Sofia, Tallinn, Vilnius, Minsk
<option value="Z=-2$DO=1$DL=3 -1 1 10 -1 7$ZN=Middle East$ZX=162">(GMT+02:00) Beirut
<option value="Z=-2$DO=1$DL=4 -1 5 9 -1 5$ZN=Egypt$ZX=163">(GMT+02:00) Cairo
<option value="Z=-2$DO=0$ZN=South Africa$ZX=164">(GMT+02:00) Harare, Pretoria
<option value="Z=-2$DO=1$DL=3 -1 6 9 3 1$ZN=Israel$ZX=165">(GMT+02:00) Jerusalem
<option value="Z=-2$DO=1$DL=4 1 1 9 1 1$ZN=Namibia$ZX=166">(GMT+02:00) Windhoek
<option value="Z=-3$DO=1$DL=4 1 1 10 1 1$ZN=Arabic$ZX=167">(GMT+03:00) Baghdad
<option value="Z=-3$DO=0$ZN=Arab$ZX=168">(GMT+03:00) Kuwait, Riyadh, Nairobi, Tbilisi
<option value="Z=-3$DO=1$DL=3 -1 1 10 -1 1$ZN=Russian$ZX=169">(GMT+03:00) Moscow, St.
Petersburg, Volgograd
<option value="Z=-3003$DO=0$ZN=Iran$ZX=170">(GMT+03:30) Tehran
<option value="Z=-4$DO=0$ZN=Arabian$ZX=171">(GMT+04:00) Abu Dhabi, Muscat
<option value="Z=-4$DO=1$DL=3 -1 1 10 -1 1$ZN=Azerbaijan$ZX=172">(GMT+04:00) Baku, Yerevan
<option value="Z=-3004$DO=0$ZN=Afghanistan$ZX=173">(GMT+04:30) Kabul
<option value="Z=-5$DO=1$DL=3 -1 1 10 -1 1$ZN=Ekaterinburg$ZX=174">(GMT+05:00) Ekaterinburg
<option value="Z=-5$DO=0$ZN=West Asia$ZX=175">(GMT+05:00) Islamabad, Karachi, Tashkent
<option value="Z=-3005$DO=0$ZN=India$ZX=176">(GMT+05:30) Chennai, Kolkata, Mumbai, New Delhi,
Sri Jayawardenepura
<option value="Z=-4505$DO=0$ZN=Nepal$ZX=177">(GMT+05:45) Kathmandu
<option value="Z=-6$DO=1$DL=3 -1 1 10 -1 1$ZN=N. Central Asia$ZX=178">(GMT+06:00) Almaty,
Novosibirsk
<option value="Z=-6$DO=0$ZN=Central Asia/Sri Lanka$ZX=179">(GMT+06:00) Astana, Dhaka
<option value="Z=-3006$DO=0$ZN=Myanmar$ZX=180">(GMT+06:30) Yangon (Rangoon)
<option value="Z=-7$DO=0$ZN=SE Asia$ZX=181">(GMT+07:00) Bangkok, Hanoi, Jakarta
<option value="Z=-7$DO=1$DL=3 -1 1 10 -1 1$ZN=North Asia$ZX=182">(GMT+07:00) Krasnoyarsk
<option value="Z=-8$DO=0$ZN=China$ZX=183">(GMT+08:00) Beijing, Chongqing, Hong Kong, Urumqi,
Kuala Lumpur, Singapore, Taipei
<option value="Z=-8$DO=1$DL=3 -1 1 10 -1 1$ZN=North Asia East$ZX=184">(GMT+08:00) Irkutsk,
Ulaan Bataar
<option value="Z=-8$DO=1$DL=10 -1 1 3 -1 1$ZN=W. Australia$ZX=185">(GMT+08:00) Perth
<option value="Z=-9$DO=0$ZN=Tokyo$ZX=186">(GMT+09:00) Osaka, Sapporo, Tokyo, Seoul
<option value="Z=-9$DO=1$DL=3 -1 1 10 -1 1$ZN=Yakutsk$ZX=187">(GMT+09:00) Yakutsk
<option value="Z=-3009$DO=1$DL=10 1 1 4 1 1$ZN=Cen. Australia$ZX=188">(GMT+09:30) Adelaide
<option value="Z=-3009$DO=0$ZN=AUS Central$ZX=189">(GMT+09:30) Darwin
<option value="Z=-10$DO=0$ZN=E. Australia$ZX=190">(GMT+10:00) Brisbane, Guam, Port Moresby
<option value="Z=-10$DO=1$DL=10 1 1 4 1 1$ZN=AUS Eastern$ZX=191">(GMT+10:00) Canberra,
Melbourne, Sydney
<option value="Z=-10$DO=1$DL=10 1 1 4 1 1$ZN=Tasmania$ZX=192">(GMT+10:00) Hobart
<option value="Z=-10$DO=1$DL=3 -1 1 10 -1 1$ZN=Vladivostok$ZX=193">(GMT+10:00) Vladivostok
<option value="Z=-11$DO=0$ZN=Central Pacific$ZX=194">(GMT+11:00) Magadan, Solomon Is., New
Caledonia
<option value="Z=-12$DO=1$DL=9 -1 1 4 1 1$ZN=New Zealand$ZX=195">(GMT+12:00) Auckland,
Wellington
<option value="Z=-12$DO=0$ZN=Fiji$ZX=196">(GMT+12:00) Fiji, Kamchatka, Marchall Is.
<option value="Z=-13$DO=0$ZN=Tonga$ZX=197">(GMT+13:00) Nuku'alofa</select>
</td></tr>

The tag used for this field type is <select>. The options are enclosed by the <option> tag, and are
predefined by the Domino server. If the field already has a value, the selected option raises the selected

Document generated by Confluence on Apr 04, 2008 19:03 Page 190

property. The value property is only used in case aliases are used on the field options.

Rich text lite

The following example exemplifies the HTML code generated for Notes rich text lite fields translated to
HTML on the Web:

<tr><td>Rich Text lite: </td><td>
<textarea name="Richtextlite" rows="7" cols="50"></textarea>
</td></tr>

The tag used for this field type is <textarea>. Its text values are enclosed between the beginning and
closing tag. If the field already has a value, its contents are held on the value property.

Important
All the rich text formats entered on a rich text lite field are lost if a document is saved on the Web
(text is converted to plain/unformatted text). The file attachments are still held on the document
and are accessible by using the /$FILE/filename Domino URL. For further information about file
attachments on the Web, refer to file attachments.

Color

The following example exemplifies the HTML code generated for Notes color fields translated to HTML on
the Web:

<tr><td>Color: </td><td>
<input name="Color" value=""></td></tr>

The tag used for this field type is <input>, with no type attribute set. If the field already has a value, its
contents are held on the value property. If an invalid color value (non-hexadecimal or non-RGB) value is
entered, Domino raises an error. At the Notes/Web tab, the user can choose from a Notes color palette or
a Web color palette. Note that the Notes tab becomes the Web tab only if the user has enabled "Use Web
palette" (File - Preferences - User Preferences).

Document generated by Confluence on Apr 04, 2008 19:03 Page 191

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs

Using forms versus pages

This page last changed on Apr 01, 2008 by jservais.

Both forms and pages are displayed on the Web as Web pages, unless the user decides to change the
page content type. The main difference between forms and pages are that pages do not store data
entered by the user. Fields, subforms, layout regions, and some embedded controls can only be used on
forms.

Pages are recommended when displaying information to the user, since they have a much better
performance than forms. This is because they are simpler in design than forms and they are served to
the user much faster by the Domino server. However, only forms can gather information entered from a
user.

There is way to use pages to display HTML forms on the Web. This allows the user to submit data using
this design element. This improves performance and reduces the effort on designing application security
and architecture. Following this approach might increase the maintenance effort while upgrading hybrid
applications. It is also complex for users with minimal experience on HTML forms. For further information
about how to use this approach, refer to using pages to submit data.

Document generated by Confluence on Apr 04, 2008 19:03 Page 192

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+pages+to+submit+data

Frameset design elements

This page last changed on Apr 03, 2008 by jservais.

• Frameset and frames
• Using framesets and frames on the Web
• iframe

Frameset and frames

A frameset is a collection of frames used to structure a Web site or an Lotus Notes database. A frame is a
section or pane, of the larger frameset window and is independently scrollable. In Notes, a frame can
contain a form, folder, page, document, view, navigator, or another frameset. A frame can also refer to a
specific URL. Framesets let you create links and relationships between frames. For example, you can have
a page displayed in a page so users can link to other pages or databases in other frames.

An example of the frameset design element open in Domino Designer

Frameset properties

The frameset design element does not have too may relevant aspects that can confuse a web developer.

Document generated by Confluence on Apr 04, 2008 19:03 Page 193

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Folder+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements

The unique property that needs to be highlighted is the window title. Since other design properties can
have a window title property set, like a form for example or another "embedded" frameset, remember
that only the top frameset is displayed in the window title. Another important detail is that you can set a
frameset to launch automatically when a database opens, and this frameset does not need to be the
same used on the Notes client. This property is also available on the Web.

Tip
To set a frameset to be launched automatically on the Web on a Lotus Domino application, go into
the application properties, select the Launch tab. For When opened on a web browser, select the
value Open designated Frameset, and set your frameset on the Frameset field.

Setting the frameset set to be launched automatically on the Web

Besides using a frameset design element to create a Web frameset, you can also use a form or page to
that. To do that, just create a page for your frameset and name it, for example, frameset.htm. Insert its
content HTML content on the design body, and change its content type to HTML. For further information
about this topic, refer to using pages as framesets.

Note
Despite the fact that framesets are a normal Web standard and help maintaining hybrid
Notes/Web application, using framesets is getting deprecated in actual Web design trends. Refer
to Navigation techniques for useful tips on this topic.

Frame properties

When a frameset is created, the text "No content" appears in each frame. To enter the content for a
frame in a frameset, follow these steps:

1. Select a frame.
2. Choose Frame -> Frame properties.
3. In the Frame Properties box, on the Basics tab, provide a name for the frame.

Make sure that each frame has a unique name. We do not recommend using the same frame name

Document generated by Confluence on Apr 04, 2008 19:03 Page 194

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Frameset+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Navigation+techniques

for frames in different framesets. For example, if you have a frame named window1 in more than
one frameset, you may have unexpected results when you set it as a target frame.

Important
You should not use HTML predefined target names to name a frame (_self, _top, _parent, and
_blank).

4. At the Type field of the Basics tab, you can choose one of the following ways contents for the frame:
link, named element or URL.

• ° Links asks you to paste a link that you copied to the Clipboard.
° Named elements are the application design elements. It can be be a page, form, frameset,

view, folder, navigator or another frameset.

Tip
If you want to display a view or folder on the Web, consider embedding it on a page or form. You
may also want to use a view template instead. For further information about this topic, refer to
view templates.

• ° URLs can be used to link any URL, inside or outside your website.

In addition to adding content to a frame, you can also target a specific frame of a frameset so that all the
links open in the target frame. You can specify a target frame in the Frame Properties box or in the
Properties boxes of many other elements (such as the properties boxes for Page design elements, Form
design elements, outline entries, embedded outlines, group scheduler, and hotspot resources). If no
target frame has been specified, the link opens in the same frame that contains the link. If you specify a
target frame that does not exist, the link opens in a new, top-level window.

You can also set the width and height of frames, in the Frame Size tab of the Frame properties. These
values may be in pixels or screen size percentage and are followed strictly on both Lotus Notes and the
Web.

Using framesets and frames on the Web

If you look at the source code of a frameset Web page, you see that it is a special type of Web page that
does not contain any content, but a skeleton of a framed group. A frameset tag block can only contain a
couple of elements:

• frame tag (<frame>...</frame>) that defines the HTML page that is going to occupy a window. The
HTML page can hold common HTML information or another frameset page that will be divided in a
new sub-window with other columns or rows.

• frameset tag sub-blocks (<frameset>...</frameset>) that divides again another sub-window (in
lines and columns) and can contain frame tags, and new frameset sub-blocks.

The following code example shows a frameset contained in the frameset.htm file:

<html>
<head> ... </head>

Document generated by Confluence on Apr 04, 2008 19:03 Page 195

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements

<frameset cols="50%,50%">
<frame name="window1" src="one.html">
<frameset rows="35%,65%">

<frame name="window2_1" src="two.html">
<frame name="window2_2" src="three.html">

</frameset>
</frameset>
</html>

Where:

• name: The name of the window, for creating links and referencing via JavaScript.
• src: The page opened on the iframe.
• frameborder: The border of the frame, in pixels.
• scrolling: Defines the scrollbar appearance. Can be set to Yes, No, or Auto to appear only when

needed.

The code in the previous example creates a special type of frameset. The first frameset tag splits the
page in two columns with 50% of the screen each. The first frame can be invoked by name window_1,
and has as source the file one.htm. The second frame is composed of another frameset, that divides the
page in two rows: one occupying 35% of the screen and another occupying 65% of it. In this sub
frameset, we can invoke the frames by the name of window2_1 and window2_2 respectivelly. These
frames source files are two.htm and three.htm respectively.

An example of frameset.html disposition

The following figure shows other examples of some basic frameset structures.

Document generated by Confluence on Apr 04, 2008 19:03 Page 196

An example of a frameset structure

On the Web, a programmer can use JavaScript to set the properties of any frame in a window. It is
important to keep in mind that Web framesets are not HTML JavaScript document, since they do not hold
any information, but the frameset layout itself. The frames are JavaScript objects accessible through the
Frame object. This object is an indexed array, ordered by the order of appearance of a frame in a
frameset. The following example shows this array order:

<html>
<head> ... </head>
<frameset cols="50%,50%">

<!-- frames[0] -->
<frame name="window1" src="one.html">
<frameset rows="35%,65%">

<!-- frames[1] -->
<frame name="window2_1" src="two.html">
<!-- frames[2] -->
<frame name="window2_2" src="three.html">

</frameset>
</frameset>
</html>

Use the previous example frameset.htm page for reference in the next examples. You can access a frame
in JavaScript using its index or name, as in the following example.

parent.frames[0].document.bgColor = "red";
parent.window1.document.bgColor = "blue";

Tip
The frame name property is set on the Name field of the Basics tab of the frame properties box.

Since this kind of code is being invoked from the child frames where the JavaScript code relies, we must
use the JavaScript parent object to invoke them, as shown in the following example:

parent.frames[0].document.bgColor = "red";

You can also use the self object to refer to frame you are working at that moment, as shown in the
following example:

Document generated by Confluence on Apr 04, 2008 19:03 Page 197

self.document.bgColor = "red";

Even though, the previous example would not work if they were invoked from third level frames, that is
what happens in our case for the frames window2_1 and window2_2. Those frames are children of the
first and second framesets respectively. To set the parent page correctly we need to call the parent object
twice; or, use the top property, that directs to the top frame of a page, as in the following example:

parent.parent.frames[0].document.bgColor = "red";
//is the same as...
top.window1.document.bgColor = "red";

The following figure shows how JavaScript creates its Frames and Windows objects depending on the
frameset disposition. It also demonstrate how a frame can invoke several routines on itself, on the top
page and on the other frames of a page, to set new properties on any other document.

A JavaScript example of code called from a frame

iframe

An iframe is an HTML frame that is displayed on a page just as a layer, occupying just a part of the user
screen, and not a section. It is similar to the <div> tag, but instead of displaying and HTML content from
that page, it does a reference to content in another page. The iframe is not recommended for Web sites
due to it non-cross compatibility and is getting deprecated. Even though, it is even more functional than

Document generated by Confluence on Apr 04, 2008 19:03 Page 198

the frame itself. It is simple to use and requires just a piece of HTML.

The following example shows an HTML code example of a frame:

<iframe name=myiframe src="iframe?OpenForm" frameborder=0 width=400 height=150
scrolling=auto></iframe>

Where:

• name: The name of the window, for creating links and referencing via JavaScript.
• src: The page opened on the iframe.
• frameborder: The border of the frame, in pixels.
• width: The width of the frame, in pixels.
• height: The height of the frame, in pixels.
• scrolling: Defines the scrollbar appearance. Can be set to Yes, No, or Auto to appear only when

needed.

An example of an iframe referencing ibm.com mixed with page content

Iframes can reference any design element of a Domino application or on the Web using URLs. They are
referenced by the frame array object on JavaScript by the order of appearance in the code. They also
good alternatives when planning to display alternate content on a web page, like a Domino view or a
form in a piece of a page. Since it uses absolute values for size, use it with care to avoid horizontal
browser page scrolling.

Document generated by Confluence on Apr 04, 2008 19:03 Page 199

Image resource design elements

This page last changed on Apr 03, 2008 by jservais.

• Using image resources
• Adding a Web site banner
• Adding a top navigation bar

Images are essential in building a visually appealing web application. By using proper images, your Web
application will look more professional.
In this section, we discuss how to use image resources in building a Web application.

Using image resources

Image resources are graphic files that can be used throughout your application. The idea is to have one
place to store the graphic files, so that you only have to make changes one time. For example, if you use
your company logo in many places throughout your application and the design of your logo changes, you
need only change it once and the change is implemented everywhere that the image is referenced.

Document generated by Confluence on Apr 04, 2008 19:03 Page 200

Note

While image resources can be in GIF, JPEG, or BMP format, they are saved in Domino as GIF or
JPEG.

To use an image resource on your form or page, you can:

• Insert the image resource directly by selecting Create -> Image Resource from the menu bar
• Reference the image resource in pass-thru HTML

The following example shows how to open an image resource by using a Domino URL:

http://www.riverbendcoffee.com/riverbend_banner.gif?OpenImageResource

Adding a Web site banner

Most Web sites have a banner at the top of the page. A banner provides a uniform look to the Web site.
In the following example, we add a banner for the Riverbend Coffee and Tea Company. The following
banner (riverbend_banner.gif) was created in Adobe Photoshop. It is 800 x 160 pixels.

The following Pass-Thru HTML was used in a form to generate a table, with the banner as a background
in one of the table cells.

<table id="SiteHeaderTable" cellspacing="0">
<tr><td id="SiteHeaderBg"> </td><td id="SiteHeaderBgEnd"> </td></tr>
</table>

The following CSS is used for the form:

Body {
margin: 0px;
font-family: arial, helvetica, sans-serif;
font-size: 10px;

}

#SiteHeaderTable {
width: 100%;

}

Document generated by Confluence on Apr 04, 2008 19:03 Page 201

#SiteHeaderTable TD {
padding: 0px;

}

#SiteHeaderBg {
background-image: url(riverbend_banner.gif);
background-repeat: no-repeat;
width: 800px;
height: 160px;

}

#SiteHeaderBgEnd {
background-color: #01520F;

}

The following figure shows how the form is displayed in the browser.

Let's look at the Pass-Thru HTML. We basically have a table with two cells. The left cell has an ID of
SiteHeaderBg and the right cell has an ID of SiteHeaderBgEnd.

In the CSS, note the following points:

• Page Margin is set to 0px in the Body section. Therefore, there is no margin surrounding the banner.
• SiteHeaderBg has the background image with the the dimensions of the table cell match the image

size.
• The background-repeat: no-repeat prevents your banner from tiling.
• SiteHeaderBgEnd has the same background color as the banner to ensure that the banner fills the

screen regardless of the screen resolution.

Adding a top navigation bar

Top navigation bar is another common web standard that offers the following benefits:

• It makes your Web application to not look like a Lotus Notes application
• It gives you more real estate for content as opposed to the typical left navigation

We created a top navigation bar of 10 x 40 pixels with Adobe Photoshop. We used a gradient overlay to
achieve the pearly effect as you can see in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 202

The following code example shows the pass-thru HTML:

<table id="SiteHeaderTable" cellspacing="0">
<tr><td id="SiteHeaderBg"> </td><td id="SiteHeaderBgEnd"> </td></tr>
<tr><td id="SiteNav" colspan="2">
<a href="#this" onclick="location.href="<Computed Value>">Home |
<a href="#this" onclick="location.href="<Computed Value>">Coffee |
<a href="#this" onclick="location.href="<Computed Value>">Tea |
<a href="#this" onclick="location.href="<Computed Value>">Stores |
<a href="#this" onclick="location.href="<Computed Value>">About Us
</td></tr>
</table>

The following code example shows the style sheet:

#SiteNav {
background-image: url(riverbend_nav.gif);
height: 40px;
font-family: arial, helvetica, sans-serif;
font-size: 12px;
font-weight: bold;

}

#SiteNav a {
font-family: arial, helvetica, sans-serif;
font-size: 12px;
font-weight: bold;
text-decoration: none;
color: black;

}

#SiteNav a:hover {
text-decoration: underline;
color: red;

}

The following figure shows the end result.

Document generated by Confluence on Apr 04, 2008 19:03 Page 203

Let's look back at the pass thru HTML. We added another row below our banner to show the image and
anchor links such as Home, Coffee, Tea, etc. The table cell has an ID of SiteNav, which is defined in our
style sheet.

In the style sheet, we reference the image to be the background image of the table cell. It also has a
height of 40 pixels to make sure that the image is shown correctly. The a and a:hover are used to define
how the anchor links look.

Tip

The next step after adding this navigation bar is to add a DHTML drop-down menu. You can find a
lot of examples simply by searching for it on the Web.

Document generated by Confluence on Apr 04, 2008 19:03 Page 204

Java library design elements

This page last changed on Apr 01, 2008 by jservais.

How to work with Java libraries in Domino

Java can be included in the Domino Database as a shared code library. The Script Libraries window in
Domino Designer has a specific action button to create a shared Java library. When the library is created,
Domino pre-fills nothing except the actual class statement, as you can see in the following figure. You
must to change the name of the class and save it before you can use the class.

Creating a new class

You can include multiple classes in a library. To include a new class, use the New Class action in the
Domino Designer pane while editing the library. Each new class appears in the designer pane as a new
Java file. In order to reference the script library, we recommend that you include a package name. The
package name is placed at the beginning of the Java file, which is standard convention.

Saving your project automatically compiles the code. Alternately, you can explicitly use the Compile...
function to compile all or individual files.

When you use the Export function to export your library files, only the .java source files are written to
your file system. You can then include and use them in another Java IDE project. Keep in mind that if you
compile such files in another development environment, you must ensure that the other development
environment has notes.jar available for inclusion.

Calling your library

In order to call your Java library from an agent, you must perform the following actions:

• While editing the agent, use the Edit Project button at the bottom of the design window, and

Document generated by Confluence on Apr 04, 2008 19:03 Page 205

include the library as part of your project.

• Any agent that references your library simply includes it via an import statement.

The following figure shows a sample of the edit project window.

There are two options to browse the available Java files. The first option is to reference your shared Java
library. The second option is to reference an external JAR, class, or Java file. After you make your
selection, click the appropriate Add/Replace button to include them in your project. Then click OK.

Some tips on using Java with Domino

Always recycle the underlying Domino objects, because Java's garbage collection does not recycle the
mapping and underlying Domino C++ objects. To avoid this, explicitly call each Domino object's method
when they are no longer referenced.

Do not attach JAR files to agents or script libraries, because the JAR files must be detached, and then
loaded and unloaded every time the agent runs. This can result in low or out of memory issues. If you
place the files directly on the file system (the notes external jar directory), then they are only loaded
once. Your next best option is to import the source code and have everything self contained in the
database.

Document generated by Confluence on Apr 04, 2008 19:03 Page 206

Document generated by Confluence on Apr 04, 2008 19:03 Page 207

JavaScript library design elements

This page last changed on Apr 01, 2008 by jservais.

JavaScript libraries are a collection of JavaScript functions that are grouped by purpose or use. You can
store JavaScript in a number of places for Web use. Where you store it is more a matter of personal
preference.

• In-line on the form by using the HTML script tags
• On pages where the content type is set to html or text/javasctipt
• In file resources as text files (usually with a .js extention, for easy identification)
• Javascript Libraries (same place as LotusScript and Java Libraries)

The biggest difference between the methods is that JavaScript libraries have a JavaScript validator and
can be included in JS Header area on the form and other areas using Insert Resource. The rest must have
the HTML include script tag manually entered. The disadvantage is that you cannot compress the library
like you can with the text file format.

<script type="text/javascript" src="/lightbox.nsf/prototype.js"></script>

Document generated by Confluence on Apr 04, 2008 19:03 Page 208

The following figure shows an example of referencing JavaScript libraries using Insert Resource.

The following figure shows an example of referencing JavaScript libraries in the HTML Head Content of a
form.

Document generated by Confluence on Apr 04, 2008 19:03 Page 209

LotusScript library design elements

This page last changed on Apr 01, 2008 by jservais.

LotusScript libraries are useful in organizing various functions and subroutines that you have in a
database. For example, you might have a library called Globals that stores all your common code. You
might also have a library called WebFormValidation that stores all your form validation code.

When using the LotusScript library design elements, keep the following points in mind:

• Always use the "option declare" in the Options section of the script library. This option requires that
all variables are declared, but in return, you know for sure that there will not be any typos on the
variable names.

• A "Use or UseLSX" error message sometimes appear when saving a script library. Try recompiling all
LotusScript (Tools -> Recompile All LotusScript)

Document generated by Confluence on Apr 04, 2008 19:03 Page 210

Page design elements

This page last changed on Apr 04, 2008 by dalandon.

• Page design elements
• Page properties
• Differences between pages and forms
• Pages naming best practices
• Additional topics

Page design elements

Pages and Form design elements are similar design elements, since they are used to hold similar design.
These designs and are often confused among beginners Domino Designer application developers,
principally when developing on Web applications. Pages are can be used to host several types of data to
the user on the Web, but specially to display rich text content. Pages can hold formatted text, graphics
and embedded controls, such as outlines and applets. To learn how to make sure how your design is
going to look into the Web, refer to Styling text for the Web.

A page design element open in Domino Designer

Document generated by Confluence on Apr 04, 2008 19:03 Page 211

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styling+text+for+the+Web

The following table lists the Domino design elements that can be used on pages on the Web.

Elements to use on a page Description

Actions Actions automate tasks for the user. Add actions
to the menu in the Notes client, or add actions
with buttons or hotspots on a page or form. For
more information, see the topic, refer to actions.

Applets Use Java applets to include small programs, such
as an animated logo or a self-contained
application, in a page or form. For more
information about including Java applets on a page
or form, refer to Applet design elements

Attachments Attach files to a page or form so users can detach
or launch files locally. For more information, refer
to file attachments.

Computed text Use computed text to generate dynamic text
based on formula results.

Embedded elements You can embed the following elements in a page
or form: a view or folder pane, navigator, outline,
date pickers or instant messaging contact list. Use
these elements alone or combine them to control
how users navigate through your application.

Graphics Place a graphic anywhere on a page or form. Use
graphics to add color to a page or form or to
create imagemaps.

Horizontal rules Add horizontal rules to separate different parts of
a page or form, or to make a page or form more
interesting visually.

HTML If you have existing HTML or you prefer using
HTML to using the formatting tools Domino
Designer offers, you can import, paste or write
your own html on a page or form. You can also
convert pages and forms to HTML.

Imagemaps An image map is a graphic you enhance with
programmable hotspots. Hotspots, in the form of
pop-up text, actions, links, and formulas, perform
an action when clicked by a user. Use imagemaps
as navigational structures in an application.

JavaScript libraries You can find and insert JavaScript libraries into a
page, form or subform. For more information on
inserting JavaScript libraries, refer to JavaScript
library design elements.

Layers Layers let you position overlapping blocks of
content on a page, form, or subform. Layers give
you greater design flexibility because you can
control the placement, size, and content of
information. For more information on layers, refer
to Layers.

Document generated by Confluence on Apr 04, 2008 19:03 Page 212

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Applet+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Adding+HTML+to+a+design
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Adding+HTML+to+a+design
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements

Links Add links to take users to other pages, views,
databases, or URLs when they click on text or a
graphic.

Sections A section is a collapsible and expandable area that
can include objects, text, and graphics.

Style Sheet (CSS) shared resources You can find and insert a cascading style sheet
(CSS) as a shared resource on a page, form, or
subform. For more information on style sheets,
refer to style sheets.

Tables Use tables to summarize information, align text
and graphics in rows and columns, or position
elements on a page or form.

Text Use text anywhere on a page or form and apply
text attributes, such as color, size, and font styles
to the text.

Page properties

Pages have a set of properties that can impact the user experience on the Web. Refer to other web
specific database properties and their effects for further information.

Differences between pages and forms

Both forms and pages are displayed on the Web as Web-pages (unless the user decides to change the
page content type), but the main difference between them are that pages do not store data entered by
the user. Fields, subforms, layout regions, and some embedded controls can only be used on forms.
There are also some other differences and best practices when using pages and forms, so refer to using
forms versus pages for further reference.

Pages naming best practices

Pages can be named using the Design element multi-aliasing technique. Using this we can have a form
called "Top rated product vendor|vendor.htm|vendor". This naming convention also brings the benefit of
have an alias that works like a traditional Web server "file name" for Domino URLs, helping keeping
aliases even if the main page content changes. This also helps search crawlers increase the page rank by
using the search engine optimization best practice of having a small description of the page on its URL.
This practice is explained more detailed on the search engine optimization section.

Additional topics

Document generated by Confluence on Apr 04, 2008 19:03 Page 213

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+forms+versus+pages
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+forms+versus+pages
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Design+element+multi-aliasing
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Search+engines+and+search+engine+optimization

• Using pages to submit data

Document generated by Confluence on Apr 04, 2008 19:03 Page 214

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+pages+to+submit+data

Using pages to submit data

This page last changed on Apr 04, 2008 by dalandon.

• Using pages to submit data
• Creating a Notes document by using a page

Using pages to submit data

There is way to use pages to display HTML forms on the Web. This allows the user to submit data using
this design element. This improves performance and reduces the effort on designing application security
and architecture. Following approach may increase the maintenance effort while upgrading hybrid
applications, and is also complex for users with low experience on HTML forms. The advantage is that you
have full control over the doctype. If you want an XHTML compliant form, this would work.

This approach is recommended for one-time entry only data, like Web site pools or contact forms. If it is
desired to allow users to edit that data in a later time, programmer must consider using forms. The only
requirements will be that the database contain a form with the same name as the HTML form, it be
accessible to the Notes Client and the fields on the Notes form match the fields on the HTML form.

Important
To allow users to submit this data via forms, they must have at least depositor access on the
database access control list.

Follow the example on a search input page below to understand how to submit information using pages:

1. Create a page, and set its Content type to HTML.
2. Add the following code at the beginning of your page.

<form method="post" action="SearchDocs?SearchView">

3. To allow users to submit data via this HTML form, add a code similar to the example in the following
figure on your page.

Using a page design element to submit a query

Document generated by Confluence on Apr 04, 2008 19:03 Page 215

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Content+type

With this code, when the user opens this Web page and clicks the Submit button, it submits the value of
the Query input field to the SearchDocs form, that actually is a search template. This is done by using the
POST HTTP method, just like using GET method, optionally used on searches via Domino URLs. Since
search templates uses a field called Query as the search term for a search, this action triggers a search
on the SearchDocs view for the value inputed on the Query field.

Creating a Notes document by using a page

...Share your best practices here.

Using QuerySave agents to receive submitted data

...Share your best practices here.

Request_Content_nnn

In Lotus Domino releases prior to 7.0, the maximum size of POST data that could be handled by the
REQUEST_CONTENT field was 64KB. When the 64 KB threshold was exceeded, the field was not usable.
This has been a problem for those applications that use the REQUEST_CONTENT field. In release 7.0.1,
this limit has been removed and Domino can now handle POST data larger than 64 KB in the
REQUEST_CONTENT field. This is accomplished as follows:

• If the POST data is less than 64 KB, then use REQUEST_CONTENT to access the POST data.
• If the POST data is greater than 64 KB, then use REQUEST_CONTENT_000 to access the first 64KB

chunk, REQUEST_CONTENT_001 to access the second 64KB chunk, REQUEST_CONTENT_002 to
access the third 64 KB chunk, and so on. Thus, a developer can use the
NotesDocument.HasItem("REQUEST_CONTENT") call to test for the presence of the
REQUEST_CONTENT field. If it exists, then there was less than 64KB of POST data.

Important
The Server Document setting, "Maximum POST data," refers to the maximum amount of POST
data that Domino will accept. This field (Internet Protocols panel -> Domino Web Engine) does not
affect the REQUEST_CONTENT field and how it is used.

Document generated by Confluence on Apr 04, 2008 19:03 Page 216

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SearchTemplate
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+Domino+URL+commands

Profile documents

This page last changed on Apr 04, 2008 by dalandon.

• What is a profile document?
• Using profile documents
• Known issues with profile documents

In this section, we will review the practice of creating and utilizing Domino Profile Documents in our
Domino Application Development practices.

What is a profile document?

Profile documents are typically used to store application and user preference data in order to facilitate
personalization. These documents are like typical Domino database documents, except they are excluded
from the database document count and are cached when said database is opened.

Profile documents are not visible in View design elements that include all documents (via @Select ALL in
the View Selection Formula, and are often accessed and updated programmatically.

Using profile documents

We recommend that you review the following Lotus Domino Designer Help Articles which discuss the
Profile Document engine:

• Profile forms
• Creating a profile form

When you are familiar with the creation and maintenance of profile documents, you can begin to architect
your Domino applications to use profile documents.

Examples of profile Documents

A simple example of the proper utilization of Profile Documents is the maintenance and utilization of a
Category metric. Our example application has a Form Design Element named "Example Form". Example
Form has a field called "category", which is used to categorize documents that are created/maintained
with this Form Design Element. To maintain data integrity while we facilitate admin-maintenance of the
categories, we create a profile document that is used to maintain the choices in the Example Form's
category field element.

Document generated by Confluence on Apr 04, 2008 19:03 Page 217

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Personalization
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements

In the previous example, we architected the category field element to provide the user with a choice list
that is maintained in the Application Profile Profile Document. Additionally, we provided a default choice
list should an issue occur with the Application Profile Profile Document.

In using this architecture, we can easily provide application maintenance capabilities to specific
Application Administrators.

Known issues with profile documents

When leveraging profile documents in multi-client/hybrid applications, the Domino HTTP Task does not
update its cached profile documents when those documents are updated via the Notes client. This
inability for the Domino HTTP Task to (immediately) recognize updates to profile documents and update
its cache accordingly has resulted in the usage of standard Notes documents to contain typical profile
document content.

The utilization of Notes documents as profile documents, while addressing the Domino HTTP Task caching
issue, adds additional documents to the Domino database document count as well as often requires

Document generated by Confluence on Apr 04, 2008 19:03 Page 218

utilization of other Domino Design Elements such as View design elements and Agent design elements.

Lotus Notes client applications can safely use the profile document engine. However we recommend that
you consider alternatives when creating Hybrid Client Applications or Client-Type Applications that are
delivered via the Domino HTTP Task.

Document generated by Confluence on Apr 04, 2008 19:03 Page 219

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Agent+design+elements

Shared field design elements

This page last changed on Apr 01, 2008 by jservais.

Shared fields have been around for a long time. Notes developers love this design element because they
only have to make changes in one place instead of touching the same field on 20 forms or subforms.
Shared fields are useful to hold CGI Variable fields or the database path.

Alternatively, you can also use regular fields on a subform. It is a matter of preference.

Document generated by Confluence on Apr 04, 2008 19:03 Page 220

Subforms design elements

This page last changed on Apr 03, 2008 by jservais.

• Subform properties
• Example of displaying a computed subform
• Deleting subforms
• Best practices for subform usage on Web applications

A subform is a design element that can hold a number of form elements that are stored as a single design
element. Subforms can contain the same elements as regular Form design elements, with some minor
exceptions, such as the HTML Head content, the window title and the WebQueryOpen and WebQuerySave
agents. Subforms also works similar to the include() method on some server side scripting languages,
where the programmer can add a piece of code to the current page.

Subforms reduce the efforts with application maintenance. When you change the content of a subform,
like a field formula, every form that uses the subform updates. Common uses of subforms include adding
common JavaScript functionalities to form pieces or showing a Web page header. A subform can be a
permanent part of a form or can appear conditionally, depending on the result of a formula. For example,
you may want to hide part of a Web form if the user do not have the proper access to edit that.

Important
Field names used in the subform can not be used elsewhere on their header forms. Changes you
make to a subform affect all forms and documents that use the subform.

Subform properties

Subforms have similar properties to forms. You edit them from the Subform Info tab. The following table
lists the subform properties and explains when to use them.

Subform property Use

Include in Insert Subform dialog Lets designers see the subform name when
inserting a subform. Excluding a subform from the
Insert Subform dialog box is not a security
measure. Users with Designer access or higher can
open any subform in IBM Lotus Domino Designer
and copy individual components. Note that this
field does not apply to computed subforms.

Include in New Form dialog Check this if you want the subform to appear
immediately when designers choose Create -
Design - Form. Note that this field does not apply
to computed subforms.

Render pass through HTML in Notes Lets you paste HTML directly into the subform. For
more information on pasting in HTML, see the
topic passthru HTML, html content type

Document generated by Confluence on Apr 04, 2008 19:03 Page 221

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements

Do not add field names to field index Check this setting to prevent new field names on
the subform from being saved in the field index.
Checking this setting saves memory.
If you do not check this setting, field names are
saved to a table and then stored in memory.
Storing field names in memory allows field names
to appear in places such as the "Add Action" dialog
box.

Example of displaying a computed subform

If in a certain application you want to display the NewWebDoc when a document is created and the
SavedWebDoc when a saved document is opened. You can define to each subform contains different
fields and html code. The following example shows the Insert Subform formula:

@If(@IsNewDoc; "NewWebDoc"; "SavedWebDoc");

Important
Subform formulas cannot be refreshed while the document is open.

Deleting subforms

It is important to make sure that a subform is not being used by any form before deleting it. When a user
opens a document that has a reference to a deleted subform on the Web, the user will never get notified.
The document will just open on the Web browser without any information from the deleted subform.
When a designer opens a form that has a reference to a deleted subform, the message following message
will appear on the status bar: "Subform: <subform name> not loaded". When a designer clicks the
deleted subform area on the form, the message "Invalid or nonexistent document" appears and the
designer cannot open the subform.

Tip
To avoid these messages, add another subform to the database and give it the same name as the
deleted one.

Best practices for subform usage on Web applications

The subform design element is helpful when designing Web applications. We provide the following list of
best practices of when and how to use subforms in order to achieve better design performance and
reduce application maintenance:

• Use subforms to hold Web page header information using the $$HTMLHead.
• Use a combo of subforms and JavaScript library design elements to hold your application scripting

code.
• Instead of using computed subforms to display data on forms that are both used on the Web and on

Notes clients, use form hide when for the Web or Notes, or use views form formulas, when
applicable.

Document generated by Confluence on Apr 04, 2008 19:03 Page 222

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Special+reserved+fields
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements

• Use computed subforms for controlling different Web page display formats, like print pages.
• Consider using subforms to help you Developing hybrid rich client and Web client applications.

Document generated by Confluence on Apr 04, 2008 19:03 Page 223

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Developing+hybrid+rich+client+and+Web+client+applications

View design elements

This page last changed on Apr 04, 2008 by dalandon.

• The view design element
• The view index
• View design elements on the Web
• Extending the view design element
• Additional topics

The view design element

In this section, we discuss the view design element and its proper and extended usage in our
development practices. We assume that you have a basic understanding of the view design element, and
focus more on how we can use this design element in our Web application development.

What is a view

The view design element is used to create both visual and functional structures for Notes Document
Collections. Unlike Folder design elements, a view design element does not act as a container for Notes
Documents, but rather acts as a filter or mask to show complete or subset Document Collections. A view
design element can use a combination of selection formula, categorization, and sorting orders to provide
an application with specific document collection content.

The view index

Repeated runtime queries of Notes Document Collections can impact the performance of our applications.
View design elements, via the view index, allows for a caching of such queries, providing a less
performance-impacting alternative to runtime queries. The view index is an internally stored indexing,
storing the Notes Document Collection displayed in the given view design element. The view index
consists of the view column and view entry content as displayed in the view design element.

Note
The Domino Designer Help file includes more information about the view index, including the
variable refresh options.

View design elements on the Web

The view design element can be used to render Notes Document Collections by using several different
methods provided to the Domino Web Developer. We discuss those methods in the following sections.

View content rendering options

Document generated by Confluence on Apr 04, 2008 19:03 Page 224

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Folder+design+elements

The View Design Element allows for three primary rendering options: Domino-generated Views, Java
Applet Views, and Treat Contents as HTML Views. In this section, we discuss the benefits and concerns of
each of these rendering options.

Domino-generated views

By using Rapid Application Development (RAD), we can allow Domino to generate all of the HTML markup
required to render the View Design Element UI.

Pros:

• Allows us to quickly create and maintain Web Browser Client-accessible view design elements
• Allows us to modify view design elements in the Domino Designer WYSIWYG View Design Element

editor

Cons:

• Limited control over the rendered Content Type - Content Type: text/html
• Rendered markup (often) not Web Development Standards-compliant
• Rendered markup (often) generates inconsistant UI across different Web browser client programs

and releases
• More advanced utilization requires hacking, including markup tags in column header labels, and

other undesirable practices

Java applet views

The View Design Element, via preference setting, can be rendered as a Java applet when said element is
viewed via a Web browser client. This rendering allows for category, column sorting, and other view
design element-specific navigation facilities to be immediately presented to the browser client.

Pros:

• ...

Cons:

• Applets can be bandwidth intensive
• Applets are heavily dependent on currently configured and properly functioning Java Virtual Machine
• Applets do not facilitate more advanced Web 2.0 functionality

Important
The use of Java Applet Views in Domino Web application development is a depreciated practice, in
favor of Domino-generated Views and (ultimately) "Treat Contents as HTML" Views.

Treat contents as HTML views

Document generated by Confluence on Apr 04, 2008 19:03 Page 225

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Rapid+application+development
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer

The view design element, via preference setting, can be set to allow the view design element contents to
be rendered as markup. The most application of this option is the generation of HTML markup to display
table rows per documents in the View Notes Document Collection. This is our most flexible rendering
option because it allows us to completely control the generated markup.

Pros:

• Complete control over generated markup
• Rendered markup can be Web Development Standards-compliant

Cons:

• Requires better understanding of the markup language that is used
• Modifications to generated markup often require combination for Formula and markup language

The Treat Contents as HTML preference can extend the intended usage of the view design elements when
used in combination with a ViewTemplate, which we discuss in the following section.

Extending the view design element

The $$ViewTemplate

The $$ViewTemplate is a design element (often a Form Design Element) that is used as the rendered
container for a View Design Element. The $$ViewTemplate can be used to structure rendered View
Content, allowing us to expand the standard usage of View Design Elements. It can ultimately redefine
how we architect our Domino Web applications.

The following table outlines the naming syntax for $$ViewTemplates.

Name syntax Description Examples

$$View Template for View
Design Element Name

Act as the $$ViewTemplate for
the View Design Element
defined.

$$ViewTemplate for people

$$ViewTemplateDefault Acts as the global
$$ViewTemplate for views unless
a specific $$ViewTemplate is
defined.

$$ViewTemplateDefault

By using multi-aliasing of design elements, we can further extend the usage of $$ViewTemplates. For
example, let's say that we the following five view design elements:

1. Example View 1|example1
2. Example View 2|example2
3. Example View 3|example3
4. Example View 4|example4
5. Example View 5|example5

Document generated by Confluence on Apr 04, 2008 19:03 Page 226

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+standards+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements

Say our example Domino Web application required that all of the view design elements, except Example
View 2 and Example View 4, have a consistent look and function, while Example View 2 and Example
View 4 have their own specific look and function. There are several different approaches that we can take
to achieve this result. However the following example is considered the best practice for using
$$ViewTemplates with multiple view design element requirements:

1. Alias your $$ReturnGeneralError with $$ViewTemplateDefault
2. Create a Form Design Element named $$ViewTemplate for example1|$$ViewTemplate for

example3|$$ViewTemplate for example5
3. Create a Form Design Element named $$ViewTemplate for example2|$$ViewTemplate for example4

In the above example, we are using the design element name aliasing capabilities to create a single
design element instance to handle commonly-designed $$ViewTemplates. We are additionally setting a
$$ViewTemplateDefault, which do not render a view. This is a functional restriction measure to ensure
that a user attempting to access (for example) Example View 6|example6, which may not be intended to
be viewed from a Web browser client.

Tip
You can further simplify this example by adding an additional alias to the View Design Elements
above. For example, Example View 1|example|example1. Then your $$ViewTemplate for the
specific views could utilize this additional alias: $$ViewTemplate for example.

$$ViewTemplates can use two different approaches to display their view design element content:

• Embedded View Design Object
• $$ViewBody Field Object

Either of these objects acts as a placeholder for the view design element, and the content displayed in
said placeholder can be electively controlled via Domino URL commands.

Domino URL commands and view design element content

Domino URL Commands can be utilized to affect rendered View Design Elements by controlling which
subset of the Notes Document Collection is rendered. The following example shows the standard view
design element URL command syntax:

viewname?command&attribute1=argument1&attribute2=argument2

The following table details several view design element-specific Domino URL commands and command
attributes.

Domino URL command/attribute Result/comments

?openview Standard View Design Element rendering
command

?searchview Standard View Design Element searching
command

?readviewentries Rendering command which creates XML markup

Document generated by Confluence on Apr 04, 2008 19:03 Page 227

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Error+handling

from View Design Element content

?command&count=n Attribute to define the total number of entries to
return from the View Entries

?command&start=n Attribute to define the starting entry for the result
set of View Entries

?command&restricttocategory=category Attribute to define the entry result set to return
from a categorized View Design Element

?command&startkey=text Attribute to define the starting entry for the result
set of a sorted View Design Element

Note
See All Domino URLs for more Domino URL commands, attributes, and arguments.

Additional topics

• Rapid application development
• SearchTemplate

Document generated by Confluence on Apr 04, 2008 19:03 Page 228

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Rapid+application+development
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SearchTemplate

Rapid application development

This page last changed on Apr 01, 2008 by jservais.

The Rapid Application Development (RAD) technique is a development methodology wherein the Domino
Developer chooses to allow the Domino server to render all native markup elements by using
Publish-to-Web enablement with minimal changes to the rendered output.

Document generated by Confluence on Apr 04, 2008 19:03 Page 229

SearchTemplate

This page last changed on Apr 01, 2008 by jservais.

$$SearchTemplate

Add your content here...

For information about special reserved fields for Domino searching, refer to Searching via Domino URL
commands.

Document generated by Confluence on Apr 04, 2008 19:03 Page 230

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+Domino+URL+commands
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+Domino+URL+commands

Web service design elements

This page last changed on Apr 03, 2008 by jservais.

• Web services and Domino
• Creating a Web service in Domino
• Consuming a Web service in Domino

Web services and Domino

In today's environment of the soaring popularity, availability, and functionality of Web Services, it is
important to consider whether you can or should make part of your application available as a web
service, or, make use of an existing public Web service.

Creating a Web service in Domino

The ability to easily create a Web service was added in Domino Release 7. Included as part of Domino
designer, creating a Web service involves the following basic steps:

• Create the Web service and set its properties
• Code the Web service
• Export and create a WSDL if you want to make it public

Your Web service is a set of Java or LotusScript classes. In the case of LotusScript, you must use that
approach and create your classes in the Declarations section.

To begin, create the Web service by clicking the New Web Service button in the Web Services pane as
shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 231

Next, you can set the Web Service properties and then code the Web service, as shown in the following
figure.

While coding your Web service, you can also use the following actions:

• Import WSDL: If you started by creating a WSDL file from scratch, or have a WSDL file for which the
entire Web service needs to be created, you can use the import function to create your code stubs.

• Export WSDL: After you create your Web service, you can use this action to export the WSDL file

Document generated by Confluence on Apr 04, 2008 19:03 Page 232

and subsequently publish it.
• Show WSDL: Shows the current WSDL for the service while you are developing it.

The following table lists additional properties that you should be aware.

Property Comments

Warn if the WSDL interface is modified Use this! This tells the developer when a change
made to the service will affect the WSDL file. After
you make the Web Service publicly available, then
you should not change the WSDL.

PortType class This is the name of your Web service's class file.
The service can be written as a Java or LotusScript
class.

Run as web user/Run on behalf of Equivalent to the same settings for agents.

Set runtime security level Equivalent to the same setting for agents.

Allow Public Access users to use this web service Equivalent to the same setting for agents.

Include operation name in SOAP action sets the soapAction="OperationName" setting in
the WSDL

Port type name Sets the "name" attribute for <wsdl:portType> tag
in the WSDL file when it is exported. This defaults
to the name of the PortTypeClass specified on the
Basics tab.

Service element name Sets the "name" attribute of <wsdl:service> tag in
the WSDL file when it is exported. This defaults to
the name of the PortTypeClass on the basics tab
followed by "Service".

Service port name Sets the "name" attribute of <wsdl:port> tag in
the WSDL file when it is exported. This defaults to
"Domino".

After you code your Web service, you access it by using the following syntax, which is similar to all
Domino Web URLs:

http://servername/databasename.nsf/webservicename?OpenWebService

Be aware that if you send the URL command for opening a Web service to a Domino server in an HTTP
GET request (for example, by typing the command in a browser), Domino responds with the Web
service's port name and the names of the operations/methods for the port. To invoke and run the Web
service, an HTTP POST must be used.

To look at the WSDL, use the syntax shown in the following example:

http://servername/databasename.nsf/webservicename?WSDL

In both cases, the Web service name is the Domino design element name (or alias) of the Web service.

Document generated by Confluence on Apr 04, 2008 19:03 Page 233

Consuming a Web service in Domino

Domino does not easily lend itself to consuming an external Web service. Domino Designer currently has
no such tools to facilitate the the import of an external WSDL file and the code generation of its
supporting functions.

However, there are two alternative suggestions, Stubby and Apache Axis.

Stubby

Stubby is an open source application that comes in the form of an NSF file. Based on Apache Axis, it is
essentially a UI tool that takes as input the URL location of a WSDL file, or a WSDL file thats on your
current file system, and does the following tasks:

• Stubby generate all the .java files, .class files, and a .jar file or files suitable for use and import into
your notes application. You either must import the JAR file itself, or the Java files into Domino
Designer (and therefore compile them) into an agent or library if you want to keep the source as a
reference.

• Stubby provides a code stub for an agent that shows you how to instantiate and call the target Web
service.

Some of the advantages of using Stubby is that no modifications to the client or server are needed, and
there are no external library dependencies.

Stubby (as any piece of software) has been known to have some limitations. For example, its SAX parser
of the Web service objects being passed back and forth could be more robust than it is. The best
recommendation is to try it and see if it fills your requirements and works for you.

Apache Axis

Another alternative is to use Apache Axis. Apache Axis is essentially a downloadable package that
contains Jar files and tools for generating all the files needed to call and use the target Web service. Like
Stubby, the included tools take as input the physical local file location of the WSDL file of the target Web
service. After you install or extract Axis, you can use a .bat file to produce your Java stubs. The batch file
has to be changed to reflect the directories on your machine, and you need a Java SDK to be present.

• Apache Axis generates only the .java files, and a .jar file or files that are suitable for use and import
into your notes application; However, it does not generate the compiled class files. Like Stubby, you
will either need to import the jar file itself, or the Java files into Domino Designer (and therefore
compile them) into an agent or library if you want to keep the source as a reference.

• Apache Axis does not provide you with a code stub to call the service from Domino.

As it turns out, the strengths and weaknesses of Stubby and Apache Axis are the opposite of each other.

One of the disadvantages of using Apache Axis is that the Jar files included in the package are external
library dependencies. The Axis Jar files that were extracted onto your machine must go into a specific

Document generated by Confluence on Apr 04, 2008 19:03 Page 234

http://www.openntf.org/Projects/pmt.nsf/ProjectLookup/Stubby

notes directory for external JAR files. Also, the java.policy file must exist on the Domino server (or Notes
client if this is called from a Notes client) JVM and allow the proper security.

One of the advantages of using Apache Axis is that the SAX parser is more robust and can handle
complex objects. There is a great writeup on using Apache Axis that is available on IBM
developerWorks®.

Document generated by Confluence on Apr 04, 2008 19:03 Page 235

http://www-128.ibm.com/developerworks/lotus/library/domino-webservices/

4.0 Building Domino Web applications

This page last changed on Apr 01, 2008 by jservais.

In this section, we help you start to build Domino Web applications.

Topics in this section

• Error handling
• Input validation - Client side
• Input validation - Server side
• Interactive data (Web 2.0)
• Login screens

° Built-in forms using $$LoginUserForm
° Custom login screens using Domcfg.nsf
° Database that came with Domino R5

• Navigation techniques
° Moving past the frameset - Making Web-based applications that do not look like Lotus Notes
° No more twisties - Using single category and a combobox to filter the view
° View-based menus

• Personalization
• Searching

° Creating custom and advanced searches using Domino
- Customizing the search results display
- Searching via Domino URL commands
- Searching via FTsearch and DBSearch

° robots.txt
° Search engines and search engine optimization
° SEO techniques

• URL considerations
• User management
• Using interactive data and Web services
• Working with data

° JSON
° RSS
° Using query views

Document generated by Confluence on Apr 04, 2008 19:03 Page 236

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Error+handling
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Input+validation+-+Client+side
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Input+validation+-+Server+side
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Interactive+data+%28Web+2.0%29
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Login+screens
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Built-in+forms+using+%24%24LoginUserForm
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Custom+login+screens+using+Domcfg.nsf
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Database+that+came+with+Domino+R5
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Navigation+techniques
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Moving+past+the+frameset+-+Making+Web-based+applications+that+do+not+look+like+Lotus+Notes
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/No+more+twisties+-+Using+single+category+and+a+combobox+to+filter+the+view
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View-based+menus
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Personalization
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Creating+custom+and+advanced+searches+using+Domino
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Customizing+the+search+results+display
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+Domino+URL+commands
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+FTsearch+and+DBSearch
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/robots.txt
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Search+engines+and+search+engine+optimization
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SEO+techniques
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/URL+considerations
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/User+management
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+interactive+data+and+Web+services
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+data
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JSON
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/RSS
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+query+views

Error handling

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Catching coding errors
• Catching server errors

Introduction

When developing a Web site, you have a different way of troubleshooting problems. Unless you are a
person who never writes code that could possibly fail and you have users that never do anything wrong,
plan for errors. Some of the error handling is done in your code, such as field validation, and some is
done by the server, such as authentication.

For troubleshooting errors, you have to resort to the server logs and some preventive coding. The
server's log (log.nsf) show errors that the server detects, but it is hard to match them up. The Web
server log (domlog.nsf) shows the URl that was entered and the resulting error message.

Catching coding errors

With the Notes Client, you can step through LotusScript, pop-up messages, and look at the document
properties. Also the Notes Client can handle some errors like mismatched field types with just a dialog
box. On the Web, this is all up to you. You can't step through the code. You can't look at the document
properties. All you get is a 500 or 400 error page. You have to design the page and site with error
handling in mind.

With JavaScript, you can display an alert to show what is happening and use the debuggers that are
available for with Mozilla Firefox and Microsoft Internet Explorer.

LotusScript agents

You sometimes use WebQueryOpen, WebQueryClose and plain agents to process the data for the Web
pages. Since you can't step through the agents by using the LotusScript debugger, you must resort to
other means. Since you are working with the browser, you can't use the print statement because it sends
the data to the browser. You can use a feature of Notes, the agentlog. The template for the log (alog.ntf)
is on the server. You only need to create the database and use the Notes classes to write to it.

On Error Goto ErrorHandler

'set to False to turn logging off
Const LOG_ON = True
Const LOG_VERBOSE = False

Document generated by Confluence on Apr 04, 2008 19:03 Page 237

Dim agentLog As New NotesLog(s.CurrentDatabase.Title&" - "& s.CurrentAgent.Name)
Call agentLog.OpenNotesLog("", "AgentLog.nsf")
If LOG_ON Then Call agentLog.LogAction("Agent Started")

'** agent code goes here **

If LOG_VERBOSE Then Call agentLog.LogAction("Updated records")
Goto TheEnd

ErrorHandler:
If LOG_ON then Call agentLog.LogError(Err, Error$_

& " Line#: " & Erl & | Object: | & Lsi_info(2))
Resume Next

TheEnd:
If LOG_ON Then

Call agentLog.LogAction("Agent Finished")
Call agentLog.Close

end if

The constants, LOG_ON and LOG_VERBOSE are used to enable logging and to allow for verbose reporting
that is helpful for troubleshooting.

Now you can put lines in to capture data as the agent is executing. When you done with development, set
the LOG_VERBOSE to false and only the errors and agent info are captured. It's helpful to look at the log
and see when an agent stopped working.

@Formula

The biggest source of errors here are mismatched field types and the dblookup/dbcolumn. For dblookup
and dbcolumn, always check for an error in the return value. There is always the chance that someone
deletes the keyword document or changes the key name.

ClassCache := "Notes":"Cache";
LookupDb := "REPID";
View := "Keywords";
Key := "DEPT";
Column := 2;
Temp := @DbLookup(ClassCache; LookupDb; View; Key; Column);
@If(@IsError(Temp); "N/A"; Temp)

For mismatched fields, you check the type before using it. These are normally from old data that has not
been migrated correctly or an error in coding on another form or agent.

Catching server errors

Authentication, authorization, and general errors can be handled on a Web site or individual database
basis. If there is error handling in the database, it's used otherwise the configuration in the Domino Web
Configuration database is used for error handling. This can be set up by Web site or server. For
information about the Domino Web Configuration database, see the 6.0 Server configuration section.

This handling of errors is for database usage only. Missing files on the server hard drive still cause a 404
error. You can setup an error.html pages on the server to handle these errors. This is described further in
6.0 Server configuration.

Document generated by Confluence on Apr 04, 2008 19:03 Page 238

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/6.0+Server+configuration
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/6.0+Server+configuration

Database specific error pages

You can have forms or pages in your database handle the general errors. This way you can try to help the
user correct their problem. If you build your own form, you can add a field called MessageString, which
shows the reason for the error. By creating a form or page with a special name, you can catch the error.

Form or page name Error

$$ReturnAuthenticationFailure User failed to be authenticate with the server

$$ReturnAuthorizationFailure User does not have enough access rights

$$ReturnDocumentDeleted The document has been successfully deleted

$$ReturnGeneralError Catch all for the rest of the errors, usually it's a
design element not found

By adding a field called MessageString to your form, it displays the reason for the error, which could be
used to give the user additional help. For example, if a user is looking for a job posting, you can tell them
it's no longer there and let them search for other jobs.

For more information, see the Designer Help database. A sample of each of these forms is in the
Riverbend sample database.

Document generated by Confluence on Apr 04, 2008 19:03 Page 239

Input validation - Client side

This page last changed on Apr 04, 2008 by dalandon.

• Why use client side input validation?
• Using JavaScript to validate
• Reducing maintenance by using hybrid validation

Why use client side input validation?

Client side user validation is used to check if data submitted by a form on a Web application is consistent
with the data types expected by the Domino server for that field. You need to check, for example, if users
are entering numeric data on Notes Number fields to avoid data conflict while saving this data to the
Domino server database.

Attention
Client side input validation is a functional technique since it reduces the time to fill in a form and
improves performance by removing round trips to server. Despite these facts, do not rely only on
it while coding your application. This technique can fail for several reasons, including HTTP post
failure, malicious data tampering, or the fact that clients might have JavaScript disabled on the
browser. Therefore, it is important to consider using Server side user input validation as well.

Using JavaScript to validate

The simplest way to validate user input on a Domino Web application is to use JavaScript. Form input
validation is on of the most common uses of the JavaScript programming. This model is fast and simple
to apply, and it has the advantage of taking place on the user's browser. Therefore, it is not necessary go
back to the Lotus Domino server to transmit data. If a preliminary validation of the user's inputs takes
place before a form is submitted, the user does not need an answer from the server, because JavaScript
validation is a instantaneous script that runs on the client browser. It does not have to transmit any data
to the server. JavaScript catches any invalid data entered before it is submitted to the server. JavaScript
also has the advantage of running on Lotus Notes client applications. It is interesting to consider using
this language while choosing a programming language for validating form inputs.

LotusScript and the Web

LotusScript does not run on the Web interface. To trap events on a Web environment, you need to use
JavaScript events. If an application has some LotusScript events that needs to run on an application on
both client and the Web, the programmer should find a way to make the best adaptation of that code to
JavaScript language. JavaScript offers several user interface features available on both Notes and the
Web, but a set of the LotusScript functions does not have an equivalent on JavaScript, since some of
them are related to the Notes user interface. The only way to run LotusScript on the Web is to use
WebQueryOpen and WebQuerySave agents in the back end. For further information about
WebQueryOpen and WebQuerySave agents, refer to using WebQueryOpen and WebQuerySave agents.

Document generated by Confluence on Apr 04, 2008 19:03 Page 240

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Input+validation+-+Server+side
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer

Notes form validation example

There are several techniques for implementing input validations on JavaScript, from events such as
onBlur, to function calls. In the following section, we use the most common and simplest technique, the
onSubmit event, that runs before a page is submitted. Read through the steps in the following example
to understand how to implement a client-side user input validation on a Web application.

Let us consider a Riverbend application with a form to collect a set of user information. This form is
initially supposed to be available for Web users with the fields Name (Text), Password (Password), Email
(Text), Phone (Text), Gender (Radio button), Country (Combobox), and Preferred colors (Checkbox).

Example of the user data form on Domino Designer

This form has several data constraints that should be observed in order to populate the database with
proper data from the fields. To check this, we create some JavaScript code to validate user input. We call
a JavaScript function called isValidForm() on the onSubmit event of the form to check the user data
input. This function returns the result from a set of validations over the user input on the form fields. To
do this, include the following code on the onSubmit event of the form:

return isValidForm()

To hold the isValidForm function, we create a JavaScript library and add this script library resource to the
form. In this JavaScript library, we verify whether the inputs are according to the data you expect. This
function returns TRUE if data is OK, allowing the user of the onSubmit event to let the submission occur.
Otherwise if data fails and returns FALSE, it prevents the document from getting saved.

The patterns that are used to validate the fields are explained as follows.

Document generated by Confluence on Apr 04, 2008 19:03 Page 241

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Riverbend+Coffee+and+Tea+Company
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+library+design+elements

Example of the user data inserted correctly on the Web form

Creating the validation function

On the JavaScript library, we create the function, which is JavaScript function called isValidForm() as
follows:

//starts the function
function isValidForm() {

The sections that follow contain pieces of code of the isValidForm() function that together make up the
entire function. In these sections, we explains how to create efficient validations for several common
situations.

Checking the Name field

The Name field is a text field. It should not be null. To validate this, we used the following code. Look at
the code comments for an explanation of the code.

//sets the form to a variable
form = document.forms[0];

/* checks the name field */
//sets the field object

objField = form.Name;
//if no data was entered on that field

if(objField.value == "") {
//move the cursor that field

objField.focus();
//displays an error message with instructions

alert("Please enter a value for the Name field.");
//returns a value to this function flagging this an invalid form

Document generated by Confluence on Apr 04, 2008 19:03 Page 242

return false;
}

Checking the Password field

The Password field is a password type field. It must contain between 4 (minimum) and 10 (maximum)
characters. It should also only be composed only of letters, numbers, and the underscore (_) sign. To
validate this, we used the following code. Look at the code comments for an explanation of the code.

/* checks the PASSWORD field */
//sets the field object

objField = form.Password;
//if name has less than 4 or more than 10 characters

if((objField.value.length < 4) || (objField.value.length > 10)) {
//move the cursor that field

objField.focus();
//displays an error message with instructions

alert("Please enter at least 4 and at most 10 characters for the Password field.");
//returns a value to this function flagging this an invalid form

return false;
}
//sets illegal characters from a regular expression

var expillegalChars = /\W/;
//if name has illegal characters

if(expillegalChars.test(objField.value)) {
//move the cursor that field

objField.focus();
//displays an error message with instructions

alert("Please use only letters, numbers or the underscore sign for the Password
field.");

//returns a value to this function flagging this an invalid form
return false;
}

Checking the E-mail field

The e-mail field is a text field. It should be composed of some characters, followed by an at symbol (@),
followed by some more characters, then a dot (.), and then two or three more characters. To validate
this, we use the following code. Look at the code comments for an explanation of the code.

/* checks the EMAIL field */
//sets the field object

objField = form.Email;
//sets illegal characters from a regular expression

var expillegalChars = /^.+@.+\..{2,3}$/
//if name has illegal characters

if(!expillegalChars.test(objField.value)) {
//move the cursor that field

objField.focus();
//displays an error message with instructions

alert("Please enter a valid e-mail address for the E-mail field.");
//returns a value to this function flagging this an invalid form

return false;
}

Checking the Phone field

The Phone field is a text field. It can contain numbers and characters such as parentheses, dashes (-),
spaces (), and dots (.). To validate this, we used the following code. Look at the code comments for an
explanation of the code.

Document generated by Confluence on Apr 04, 2008 19:03 Page 243

/* checks the PHONE field */
//sets the field object

objField = form.Phone;
//sets illegal characters from a regular expression

var strStripped = objField.value.replace(/[\(\)\.\-\]/g, '');
//if name has illegal characters

if (isNaN(parseInt(strStripped))) {
//move the cursor that field

objField.focus();
//displays an error message with instructions

alert("Please enter a phone number with valid characters for the Phone field.");
//returns a value to this function flagging this an invalid form

return false;
}

Checking the Gender field

The Gender field is a radio button. It should have at least one of the options selected. To validate this, we
used the following code. Look at the code comments for an explanation of the code.

/* checks the GENDER field */
//sets the field object

objField = form.Gender;
//sets a boolean before the loop

bolFoundValue = false;
//goes thru each value

for (i=0; i<objField.length; i++) {
//verifies if it was checked

if (objField[i].checked) {
//if checked, stops the loop

bolFoundValue = true;
break;

}
}
//checks if a value was entered

if (!bolFoundValue) {
//move the cursor that field

objField[0].focus();
//displays an error message with instructions

alert("Please select a value for the Gender field.");
//returns a value to this function flagging this an invalid form

return false;
}

Checking the Country field

The Country field is a combo box. It should not have the first index option (Select one...) selected. To
validate this, we used the following code. Look at the code comments for an explanation of the code.

/* checks the COUNTRY field */
//sets the field object

objField = form.Country;
//sets a boolean before the loop

var bolFoundValue = false;
//checks if a option selected is the first one

if (objField.selectedIndex == 0) {
//move the cursor that field

objField.focus();
//displays an error message with instructions

alert("Please select a value for the Country field.");
//returns a value to this function flagging this an invalid form

return false;
}

Document generated by Confluence on Apr 04, 2008 19:03 Page 244

Checking the Preferred colors field

The Preferred colors field is a check box. It should have at least two values selected. To validate this, we
used the following code. Look at the code comments for an explanation of the code.

/* checks the COLORS field */
//sets the field object

objField = form.Colors;
//sets a integer before the loop

intCountValues = 0;
//goes thru each value

for (i=0; i<objField.length; i++) {
//verifies if it was checked

if (objField[i].checked) {
//if checked, adds a value

intCountValues++;
}

}
//checks if a value was entered

if (intCountValues < 2) {
//move the cursor that field

objField[0].focus();
//displays an error message with instructions

alert("Please select at least two values for the Preferred colors field.");
//returns a value to this function flagging this an invalid form

return false;
}

Closing the function and returning a value

If the whole validation was done and no issues were found regarding the data, we can return true to this
function to allow the onSubmit event to run.

//if it passed everything, the fields are ok
return true;
//ends the function
}

This is just an example of a code validation. You can improve this code and make it suitable for your
application based on your needs.

Reducing maintenance by using hybrid validation

Since JavaScript is also available on the Notes client interface, you may want to reduce the application
maintenance by having a hybrid client side input validation by using the same JavaScript code on both
the Web and Notes client. JavaScript comes enabled by default on the Notes configuration, but it is good
to make sure it is enabled on the users Lotus Notes workstations. To check this, on the Notes client, click
File > Preferences. (For Macintosh OS X users, click Lotus Notes > Preferences.) Click Basic Notes
Client Configuration. Under Additional options, select Enable JavaScript.

Document generated by Confluence on Apr 04, 2008 19:03 Page 245

Enabling JavaScript on Notes

To do this validation on Lotus Notes, go to the form design and on the onSubmit event, enter the same
code described above for the validating the form on the Web.

return isValidForm()

Now remember to set the event to run on Notes Client using JavaScript language, as shown on the
picture below.

The onSubmit event code on selected to run on the Notes Client using JavaScript language

Since the isValidForm() function code is hosted in a script library (as described above), it can be accessed
by the form on both Notes and the Web. The following figure shows the validation of the Name field
occurring on Notes client.

Document generated by Confluence on Apr 04, 2008 19:03 Page 246

Example of the user data form on Lotus Notes client

Tip
Not all the functions that are available on JavaScript on the Web are available on the Notes
interface. Consider using basic JavaScript routines on your code validation to ensure that your
code can run on both environments.

The examples listed above are just a sample of how you can validate your code by using JavaScript. You
should always keep in mind that JavaScript may not suit all your validations. In some cases, you may
need to use server side validation or combo hybrid client side validations with LotusScript. Refer to
Defining functional requirements based on client type for information additional resources about defying
these requirements.

Document generated by Confluence on Apr 04, 2008 19:03 Page 247

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Defining+functional+requirements+based+on+client+type

Input validation - Server side

This page last changed on Apr 02, 2008 by jservais.

• Introduction
• Validating by using field input validation
• Validating on WebQuerySave agents
• Checking the attachment sizes of the submitted documents

Introduction

When working with Lotus Notes forms on Web applications, we need to make sure that data being
received on the server is appropriate for its back-end computations. Depending on the level of security
required by an application, a programmer may be required to validate at server level if the data
submitted by a form is reliable. You may have to do small validations, just like checking if we have loss of
user-submitted field data, to complex validations like data types checking, characters counting,
attachment lengths and even HTTP post headers tampering.

The most common way to avoid data loss is to retrieve the values to be validated by using the hidden
form fields, as well as client-side validations by using JavaScript. When there is a lot of data to be
validated in a form, this can cause generated HTML pages to be very heavy, impacting the user and
server performance. Additionally, it's almost impossible when several fields need to be validated against
different conditions. A simpler solution is available through the use of conventional coding.

Validating by using field input validation

A simple way to validate a field is to use the input validation properties of the field. @Success and
@Failure work in field input validation formulas on the Web. The @Failure path causes the message
specified as the parameter to appear on a new page. In the following validation formula, if the user fails
to enter a value for Name, the word "Error" in bold is displayed on a new page:

@If(Name = ""; @Failure("Error<\strong>"); @Success);

You can make the failure page more meaningful by using more extensive HTML in the error message as
shown in the following example:

msg1 := "Please enter a value for the Name field.

";
msg2 := "";
msg3 := "Click here to try again.";
msg := msg1 + msg2 + msg3;
@If(@ThisValue = ""; @Failure(msg); @Success)

The problem with this is that you need to treat the validation entering the Input validation code field by
field on the form. This practice increases the maintenance effort because the error messages gets tied to

Document generated by Confluence on Apr 04, 2008 19:03 Page 248

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Input+validation+-+Client+side

each field, while it could be more simplified using a centralized script.

Validating on WebQuerySave agents

Another practice for server side user input validation of a Web form on a Lotus Domino server is to call an
agent on the WebQuerySave event of the form. This agent does all of the validations and redirects users
to an error page, or prints alerts and returns to a blank form.

Generally, the WebQuerySave event is called by using the JavaScript submit command or by using the
more direct "@Command([FileSave])". To maintain the data entered by the user, follow these steps:

1. On your WebQuerySave agent, make sure the first statement you make is to set "SaveOptions" to
0.

2. After data is submitted, validate it by using a combination of LotusScript and JavaScript, as shown
on the following example:

Sub Initialize

On Error Goto CommomErrHandler

Dim session As New NotesSession
Dim doc As NotesDocument
Dim ndt As NotesDateTime
Dim arrFileSizes As Variant

'sets the current submitted document
Set doc = session.DocumentContext

'prevents the document from getting saved at this point
doc.SaveOptions = "0"

'validating a text field
If doc.TextField(0) = "" Then

Print |<script language="JavaScript1.2" type="text/javaScript">|
Print |history.back();|
Print |alert("Please enter a value for the text field");</script>|
Exit Sub

End If

'validating a numeric field
If Not Isnumeric(doc.NumberField(0)) Then

Print |<script language="JavaScript1.2" type="text/javaScript">|
Print |history.back();|
Print |alert("Please enter a numeric value for the number field");</script>|
Exit Sub

End If

'validates a date field
Set ndt = New NotesDateTime(doc.DateField(0))
If (doc.DateField(0) = "") Or (Not ndt.IsValidDate) Then

Print |<script language="JavaScript1.2" type="text/javaScript">|
Print |history.back();|
Print |alert("Please enter a date value for the date field");</script>|
Exit Sub

End If

'lets the document get saved
doc.SaveOptions = "1"
Call doc.Save(True, False)

'Prints a success form
Print "[" + strDummy + "/f.Success?OpenForm&DocID=" + doc.UniversalID + "&Title=" +

doc.TitleField(0) + "]"

Exit Sub

Document generated by Confluence on Apr 04, 2008 19:03 Page 249

'treats commom errors
CommomErrHandler:

Print "Got error on (WebQuerySaveAgent) #" + Cstr(Err) + " - " + Error$ + " on line " +
Cstr(Erl)

Msgbox "Got error on (WebQuerySaveAgent) #" + Cstr(Err) + " - " + Error$ + " on line "
+ Cstr(Erl)

Exit Sub
End Sub

There is another process to maintain data entered by a user, which we describe as follows:

1. Add one computed for display field, for example ErrMsg. Use the same formula you used for the
Field name.

2. Add a hidden button (style='display:none") and call the agent on this button. You can call this
button "btnValidate." Use the formula: "@Command([ToolsRunMacro]; "agentName") for calling the
agent. Remove your agent call from WebQuerySave.

3. Modify the agent. Then after you set up the document, complete these tasks:
a. Make sure the first statement you make is to set "SaveOptions" to 0 and "ErrMsg" to ""

(blank).
b. Remove any "print" statements.
c. Make sure the messages to be displayed to the user are now set in the field "ErrMsg" (using

the document handle).
d. Remove any redirection in case of error.
e. If no error occurs, then simply set "SaveOptions" to 1.

4. In the "Onload" event of the form, write some JavaScript to check the "ErrMsg" field and to make
sure the alert value of the field is not blank. This gives an error message to the Lotus Notes user on
form validation failure.

5. Make that field blank using JavaScript so that it does not alert on every page refresh after that.
6. On "btnValidate," where we call the agent, add the following formula to ensure that the form is

submitted if the validations are passed and we set "SaveOptions" to 1 in our agent.

@If(SaveOptions="1"; @Command([FileSave]); @Return(""));

7. Instead of calling "submit" on the form's Save button, call "click" of "btnValidate" by using
JavaScript.

Our agent is called on the Save button. Since the form is not submitted yet, this is where we have the
document context live. We don't have any print statements. Therefore, it won't overwrite the document
context. If validations have failed, we have messages set in our "ErrMsg" field. After the agent finishes
page refreshes and causes alerts to display from the "Onload" event and all user entered data is there,
there is no loss at all. If no error shows, then the next formula agent call, which checks for the
"SaveOptions" value, saves the form that submits the form for saving.

Checking the attachment sizes of the submitted documents

When a Domino Web form has file upload controls to allow users to upload file attachments to their
documents, you may want to limit the size of these attachments to avoid server performance issues. The
easiest way to implement this kind of input validation on a Web form is to use a WebQuerySave agent to
check the size of the attachments that are created on a form. A simple way to achieve this is to use the
code shown in the following example:

Document generated by Confluence on Apr 04, 2008 19:03 Page 250

Sub Initialize

Dim session As New NotesSession
Dim doc As NotesDocument
Dim arrFileSizes As Variant

'sets the current submitted document
Set doc = session.DocumentContext

'prevents the document from getting saved at this point
doc.SaveOptions = "0"

'verifies if the attachment sizes is bigger then 10MB
arrFileSizes = Evaluate("@AttachmentLengths", doc)
If Implode(arrFileSizes) <> "" Then

Forall v In arrFileSizes
If v > (10485760) Then '10MB represented in bytes

doc.SaveOptions = "0"
Print |<script language="JavaScript1.2"

type="text/javaScript">|
Print |history.back();|
Print |alert("You can not have any attachment bigger then

10MB");</script>|
Exit Sub

End If
End Forall

End If

'lets the document get saved
doc.SaveOptions = "1"
Call doc.Save(True, False)

End Sub

Document generated by Confluence on Apr 04, 2008 19:03 Page 251

Interactive data (Web 2.0)

This page last changed on Mar 27, 2008 by heinsje.

Share your best practices here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 252

Login screens

This page last changed on Apr 03, 2008 by jservais.

• Custom login screens
• Related information

Custom login screens

Custom login screens can be created for a server, so that we can have our Riverbend Coffee and Tea
Company logo on the page and make other modifications if we like.

We create the custom login form in any database and then make sure the Web server configuration
database is present on the server. Within the Web server configuration database, we then create the
Login Form Mapping to tell the server how to find our custom login form. The Login Form mapping also
tells the server when to use this custom form and lets us create multiple custom login forms if we need
them for different host names.

Related information

Web server configuration database

• Built-in forms using $$LoginUserForm
• Custom login screens using Domcfg.nsf
• Database that came with Domino R5

Document generated by Confluence on Apr 04, 2008 19:03 Page 253

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+server+configuration+database
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Built-in+forms+using+%24%24LoginUserForm
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Custom+login+screens+using+Domcfg.nsf
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Database+that+came+with+Domino+R5

Built-in forms using $$LoginUserForm

This page last changed on Mar 27, 2008 by heinsje.

Share your best practices here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 254

Custom login screens using Domcfg.nsf

This page last changed on Apr 02, 2008 by jservais.

Share your best practices here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 255

Database that came with Domino R5

This page last changed on Apr 04, 2008 by dalandon.

Share your best practices here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 256

Navigation techniques

This page last changed on Apr 02, 2008 by jservais.

When you plan for the Web, you have to think about navigation. Users don't have a workspace to select
the database they want. You must provide site-wide navigation that is consistent. Don't use outlines in
one database and links in another. Some of the navigation techniques used in Notes can be used on the
Web. For an application that resides in one database, you can use the outline but then changes must be
done by a developer, which may be OK. The Web offers additional navigation possibilities such as
horizontal and vertical menus that can have submenus. There are menus already designed and available
for free and purchase on the Internet.

In this section, we explore different ways to layout the site and pages, from a view-based menu to
frameless pages and ways to use embedded views.

• Moving past the frameset - Making Web-based applications that do not look like Lotus Notes
• No more twisties - Using single category and a combobox to filter the view
• View-based menus

Document generated by Confluence on Apr 04, 2008 19:03 Page 257

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Moving+past+the+frameset+-+Making+Web-based+applications+that+do+not+look+like+Lotus+Notes
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/No+more+twisties+-+Using+single+category+and+a+combobox+to+filter+the+view
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View-based+menus

Moving past the frameset - Making Web-based applications that do not look
like Lotus Notes

This page last changed on Apr 02, 2008 by jservais.

In the Notes client, the frameset is used to set up areas for specific purposes. You have a Navigation
pane on the left with a view area next to it and possibly a preview pane. It works really nicely. On the
Web, it tends to have more problems then benefits. It's hard for users to print because they have to be in
the frame to print it. It makes development easier since you have to make only one navigation page. It's
also hard on screen readers for those with vision problems.

Since it's easy to simulate, it's slowly going the way of dial-up. It is used just where it's the only way to
do it.

You can use the following ways to build pages that have the look of framesets:

• Use tables unless you are building a tabular list. The use of tables for layout is not acceptable.
• Use one form that gets a key as a URL parameter and pulls the data that is needed, so that the

page doesn't change.
• Use HTML div tags and cascading style sheets (CSS) to give your page structure. By using CSS, you

can adjust the pages easily and edit them live to see the changes. In addition, you have the ability
to separate the content from the layout.

If you are planning for this Web site to be usable for years, easily maintained, and looking current, then
plan on learning CSS. Like JavaScript libraries, the Internet provides a large number of predesigned
frameworks.

Here we look at a site layout that uses a framework called Blueprint. Blueprint is a CSS framework that is
laid out in a grid format to make working with similar to using tables. You set up the page with HTML div
tags. Div tags let you set up the width and height using CSS, so that it looks like a framset. See the
Styles and CSS primer section for more information about CSS. When you use a frameset, you define it
once. With CSS, you must include style code on each form. This can be done with subforms, includes or
copying the code.

In the Riverbend sample database, there is a sample page that has a Header, Navigator, Content and
footer defined.

Document generated by Confluence on Apr 04, 2008 19:03 Page 258

http://code.google.com/p/blueprintcss/
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styles+and+CSS+primer

No more twisties - Using single category and a combobox to filter the view

This page last changed on Apr 02, 2008 by jservais.

Everyone knows that categorized views are great when developing a notes application. Users can click
the twistie to expand or collapse a category and find the documents they are looking for with ease. On
the Web, it is difficult to navigate through a categorized view, especially if you have many categories. It
also makes your Web application look too much like a Lotus Notes application that is Web-enabled from
the start.

The following figure shows a categorized view for products that the Riverbend Coffee and Tea Company
sells.

This is what we are trying to achieve. Users select a product type from the drop-down box and they see
only the products that belong to the selected type.

Document generated by Confluence on Apr 04, 2008 19:03 Page 259

First, we must change the Products view. We need to add "ALL" to the first column, so that users can see
all products when they select "ALL".

Document generated by Confluence on Apr 04, 2008 19:03 Page 260

Next, we must add the drop-down box to the "$$ViewTemplate for Products" form.

Document generated by Confluence on Apr 04, 2008 19:03 Page 261

In the previous example, we used pass-thru HTML to generate the drop-down box because a Notes field
is not displayed when you open a view through the ?OpenView method. Ccomputed text is used to get
the drop-down box values from a field or you can use @DbColumn to get the values from the categorized
view.

The drop-down box calls the SwitchView function to switch the view with the RestricToCategory URL. The
function uses the WebDbPath html field on the form to get the database path. It has the @WebDbName
formula in it.

function SwitchView (selectField) {
f = document.forms[0];

selection = selectField.options[selectField.options.selectedIndex].text;

location.href = "/" + f.WebDbPath.value + "/Products?OpenView&RestrictToCategory=" +
selection;
}

In addition, we want to have our selection to be chosen when switching to a new category.

By adding the following code in the onLoad event of the "$$ViewTemplate for Products" form, the new
category is selected. The function uses the SelectedCategory html field on the form that has the
@URLQueryString ("RestrictToCategory") formula.

function SelectDropDown (DropDownField) {
f = document.forms[0];

Document generated by Confluence on Apr 04, 2008 19:03 Page 262

if (f.SelectedCategory.value != "") {
for (i = 0; i < DropDownField.options.length; i++) {

if (DropDownField.options[i].value == f.SelectedCategory.value){
DropDownField.options[i].selected = true

}
}

}
}

Tip

You can also use a combination of Ajax and ?ReadViewEntries to display the view. This results in a
quicker response time because the page does not refresh when you switch category.

Document generated by Confluence on Apr 04, 2008 19:03 Page 263

View-based menus

This page last changed on Apr 02, 2008 by jservais.

You can use a view to build a menu for the Web. This way, as new content is added, the menu is
automatically updated or you can use it to build the site or navigation for the applications. By taking the
area titles and the URL to them, using the HTML unordered list tags and CSS, you have a menu. If
you don't have categories, you can use an embedded view that is set to HTML and put the tags in the
view.

View menu on the Web

Navigation area

The following code can be placed on the form or page, where you want the navigator to be displayed:

<div id="navcontainer">

<Computed Value>

</div> <!-- ends #navcontainer-->

The computed text element that is shown as <Computed Value> in the previous code example contains
the following formula. The formula pulls a column from a view called (nav). It formats the returned
values into an HTML list with the li tags.

ClassCache := "Notes":"NoCache";
Db :="":"";
View:= "(nav)";
Temp := @DbColumn(ClassCache; Db; View; 3);

Document generated by Confluence on Apr 04, 2008 19:03 Page 264

Navlist := @If(@IsError(Temp);"";temp);

cat := @Left(@Subset(Navlist;1);"~");
nav := "<li class=\"navlist\">"+cat+"";
cnt := @Elements(Navlist);

@For(n := 1; n <= cnt ; n := n + 1;
tcat := @Left(@Subset(NavList[n];1);"~");
nav := nav + @If(cat = tcat;

@Right(NavList[n];"~");
"" + @NewLine + "<li class=\"navlist\">"
+ tcat + "" + @Right(NavList[n];"~"));

cat := tcat
);
nav

View

The Heading field is in a format to make sorting and grouping easy. The field contains a value like
"1.heading title", where the 1 ensures the correct grouping and sort order.
The sort field sorts the entries in each group.

col1:@TextToNumber(@Left(Heading1;"."))
col2:sort
col3 @Right(Heading1;".")+"~" +""+pURL+""

The following example shows the generated HTML code:

<div id="navcontainer">

<li class="navlist">Admin Tools

Home
Domino Exporer
Database Config

<li class="navlist">Dev tools

Dom 2 json

<li class="navlist">Applications

Photo Gallery App

<li class="navlist">Tips

DAV and SQL views
Install db2

</div> <!-- ends #navcontainer-->

The form, view, and CSS are available in the Riverbend sample database.

Document generated by Confluence on Apr 04, 2008 19:03 Page 265

Personalization

This page last changed on Apr 02, 2008 by jservais.

• User profile and preference documents
• Client-side preference caching
• A bit of both

We see "Personalization" in the majority of applications and services that we use today - from Google's
iGoogle to the functional preferences of this Wiki. Application personalization can provide users with
function and features specific to their needs and help facilitate ease of use. In this section, we discuss the
best practices for providing user personalization in Domino Web applications. We recommend that you
have a firm understanding of the Web Browser Client Environment, HTML, JavaScript, and general
Domino Web development practices.

User profile and preference documents

Lotus Notes Client developers are familiar with the practice of creating a preference document, either
unique to the application, user community, or a specific user, that facilitates functional personalization of
the given application. This is typically accomplished via Profile documents. As we look to expand our
Domino applications to the Web browser and mobile client environments, we must consider the known
Domino HTTP Task caching issues that surround profile documents, and look to a more multi-client
friendly personalization architectures.

To facilitate such functional requirements, we can architect our Domino applications so that they use user
profile and preference documents. These documents, which are keyed to the application, user
community, or to specific users, contain information that facilitates application personalization.

Client-side preference caching

Due to the known issues with profile documents and applications delivered via the Domino HTTP Task,
the alternate usage of Notes documents to maintain profile document-like information can require
additional resource usage and "chattiness" between (for example) the Web browser client and Domino
applications.

To alleviate costly round-trips to the Domino server to confirm application and user preferences (via
runtime lookups to Notes documents acting as profile documents), we can use the local client
environment, via HTTP cookies, to locally access user and application preferences.

A bit of both

We can architect and design our Domino Web applications to store user profile and preference document
data in HTTP cookies. These same applications can use the local HTTP cookie data throughout the session

Document generated by Confluence on Apr 04, 2008 19:03 Page 266

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+Web+browser+client+environment
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JavaScript+primer
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Profile+documents
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Profile+documents#Profiledocuments-KnownIssueswithProfileDocuments
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Profile+documents#Profiledocuments-KnownIssueswithProfileDocuments
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+Web+browser+client+environment#UnderstandingtheWebbrowserclientenvironment-HTTPCookies

(or future sessions) with the Domino server. The lack of HTTP cookie data or otherwise missing or
logically outdated data can trigger the recreation or updates of the local HTTP cookies.

By using HTTP cookies and a profile stored in a Domino database, you can get a robust tool for handling
personalization. For example, you can use a WebQueryOpen Web to store a document in a profile
database and store that document's unique document ID in the user's HTTP Cookie. The beauty of this
approach is that you can start gathering preference information on the user, even before they have
registered.

If you have a shopping basket or a favorites feature, you simply add a child document to the user's
profile in the profile database, using the unique document ID from the user's HTTP cookie. When the user
needs to register, you can POST this information to the user's profile in the profile database, using the
unique document ID. During registration, be sure to request the user's e-mail address and a password.

If for any reason a user loses their HTTP cookie, you can ask them to log in. This would not be Domino
authentication, but the "Login" form would perform the following actions:

• Look up their profile in the profile database, in a view sorted by e-mail address.
• Verify the password.
• Reset the unique document ID back in the user's HTTP cookie.

This development methodology and applied technique not only addresses the aforementioned
"chattiness", but can also streamline and enhance the user experience.

We invite you to add more of Domino personalization techniques or best practices here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 267

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+Web+browser+client+environment#UnderstandingtheWebbrowserclientenvironment-HTTPCookies
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Agent+design+elements#Agentdesignelements-WebQueryOpen
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+Web+browser+client+environment#UnderstandingtheWebbrowserclientenvironment-HTTPCookies
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+Web+browser+client+environment#UnderstandingtheWebbrowserclientenvironment-HTTPCookies
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTML+primer#HTMLprimer-TheHTMLFormElement
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+Web+browser+client+environment#UnderstandingtheWebbrowserclientenvironment-HTTPCookies
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Understanding+the+Web+browser+client+environment#UnderstandingtheWebbrowserclientenvironment-HTTPCookies

Searching

This page last changed on Apr 04, 2008 by dalandon.

Searching is one of the most useful functionalities that a Web application can have. Searches allow users
to easily find data and manipulate it according to their needs. To facilitate peoples' lives, Lotus Domino
has a complete set of tools to allow application developers to implement simple and high quality search
functionalities. These tools can be used to allow data search and to implement a search itself.

In the following sections, we present these search techniques. We provide tips on how to increase a Web
site ranking on search engines by using search engine optimization (SEO) and explain how to implement
the all the techniques available to search for data on a Lotus Domino Web environment.

Use the following links for search information about performance:

• IBM Redbook: Performance Considerations for Domino Applications, SG24-5602
• IBM developerWorks article: Database properties and document collections

Additional topics

• Creating custom and advanced searches using Domino
• robots.txt
• Search engines and search engine optimization
• SEO techniques

Document generated by Confluence on Apr 04, 2008 19:03 Page 268

http://www.redbooks.ibm.com/abstracts/sg245602.html
http://www.ibm.com/developerworks/lotus/library/notes7-application-performance1/
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Creating+custom+and+advanced+searches+using+Domino
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/robots.txt
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Search+engines+and+search+engine+optimization
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SEO+techniques

Creating custom and advanced searches using Domino

This page last changed on Apr 02, 2008 by jservais.

In this section, we show how to use different techniques to display search results for Domino Web
applications. Refer to the following entries for further information:

• Customizing the search results display
• Searching via Domino URL commands
• Searching via FTsearch and DBSearch

Document generated by Confluence on Apr 04, 2008 19:03 Page 269

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Customizing+the+search+results+display
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+Domino+URL+commands
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+FTsearch+and+DBSearch

Customizing the search results display

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Customizing the "No results found" message
• Using the Next and Previous buttons or hotspots with Start and Count parameters
• Displaying the results by using AJAX

Introduction

On the Domino server, we can use diverse techniques to manipulate the way it displays the results of a
search in a SearchTemplate form. Some of these techniques are displayed in the following sections.

Customizing the "No results found" message

Every SearchTemplate form should have an editable Rich text field called $$ViewBody. This field is used
for displaying the content of views and search results over views on the Web. When a search does not
produce any results that match the search criteria specified by the user, Domino generates an error
message with the following statement by default on the $$ViewBody field: "No documents found", as
shown in the following figure.

Domino "No documents found" default message

This message can be off-context and confusing in several situations. Therefore, consider changing the
resulting message. On search template forms, you may want to create a Text computed for display field
called Count (value: Count). This field automatically holds the number of documents found from that
search. By having the number of documents found in a search, in the paragraph that holds the view
body, you can add a "hide when" formula to hide that paragraph in case documents were found.

@ TextToNumber(Count) = 0

Document generated by Confluence on Apr 04, 2008 19:03 Page 270

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SearchTemplate
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SearchTemplate

Hiding the $$ViewBody field if no documents are returned

Just below that paragraph, you add a new paragraph with your own "No documents found" custom
statement that is displayed when no documents are found. It can also be in a computed for display field
on computed text. The "hide when" formula for this paragraph is just the opposite of the one that is used
on the $$ViewBody paragraph. It is only displayed when documents are not found.

@TextToNumber(Count) != 0

The following figure shows an example of a custom "no documents found" message for the Riverbend
Coffee and Tea Company Web site. In this case, the custom message is displayed when the user searches
for a coffee drink flavor that is not available.

Customized "No documents found" message

Using the Next and Previous buttons or hotspots with Start
and Count parameters

If you are using Start and Count parameters from a SearchTemplate or ViewTemplate, you can include
the Next and Previous buttons or hotspots to enable users to navigate between pages of results. Both
parameters must be used if you are using navigation buttons.

1. Open your customized results form and place the buttons or hotspots labeled Next and Previous
where you want them to appear on the form.

2. For the button or hotpsot labeled Next, write a formula that advances the user forward one page.
3. For the button or hotspot labeled Previous, write a formula that takes the user back one page.

Document generated by Confluence on Apr 04, 2008 19:03 Page 271

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Riverbend+Coffee+and+Tea+Company
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Riverbend+Coffee+and+Tea+Company
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SearchTemplate

The following example shows a formula for a Next button or hotspot:

@If(Hits >= Count; @URLOpen("/" + @Subset(@DbName; \-1) + "/" + SearchView +
"?SearchView&Query=" +
@ReplaceSubstring(Query; " "; "+") + "&Start=" + @Text(Start+Hits) + "&Count=" + @Text(Count) +
"&SearchOrder="+@Text(SearchOrder) \+"&SearchWV="+@If(SearchVw =
0;"FALSE";"TRUE")+"&SearchThesaurus="+@If(SearchThesaurus = 0;"FALSE";"TRUE") +
"&SearchMax=" + @Text(SearchMax)); "")

The following example shows a formula for a Previous button or hotspot:

@If(Start > Count; @URLOpen("/" + @Subset(@DbName; \-1) + "/" \+SearchView +
"?SearchView&Query=" +
@ReplaceSubstring(Query; " "; "+") + "&Start=" + @Text(Start-Count) + "&Count=" + @Text(Count)
+
"&SearchOrder="+@Text(SearchOrder) \+"&SearchWV="+@If(SearchVw =
0;"FALSE";"TRUE")+"&SearchThesaurus="+@If(SearchThesaurus = 0;"FALSE";"TRUE") +
"&SearchMax=" + @Text(SearchMax)); "")

Tip
To avoid syntax errors, use @ReplaceSubstring(Query; "" ' "+") to replace all of the spaces in
your query with plus signs (+).

Displaying the results by using AJAX

You can take advantage of the AJAX capabilities to build searches for a Domino Web application. The
benefit of this approach is to enable users to have a page that is partially loaded, have the search results
loading asynchronously in a second step, and enable such features as pagination without loading the
entire page again, improving server performance.

Domino offers a URL to access view data by using XML. The format of this URL is shown on the following
example:
http://www.riverbendcoffee.net/helpdb.nsf/htmlview?ReadViewEntries

You can build your a view by parsing the XML results from this URL by using AJAX. To do that, you must
browse through the XML structure created by the ReadViewEntries URL. You need to get the content of
the viewentry nodes from the XML, and print it on the page for the user. Use the following steps to create
a simple AJAX view:

1. Create an HTML page by using a page design element, for example.
2. On this form, create a <div> tag with an id attribute, so that we can add the HTML that is going to be
retrieved from the XML parsing.Refer to the following example:

<div id="myview"></div>

3. On the page onLoad event, make an xmlhttp call to retrieve the XML data.Refer to the following
example:

getView("http://www.riverbendcoffee.net/helpdb.nsf/htmlview?ReadViewEntries");

Document generated by Confluence on Apr 04, 2008 19:03 Page 272

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+AJAX
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www.riverbendcoffee.net/helpdb.nsf/htmlview?ReadViewEntries
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Introduction+to+AJAX

Your form will be similar to the one shown in the following figure.

Form that retrieves the XML

4. In the JS Header, add the following code:

//calls the view parsing
function getView(strView) {

//works over all possible entries
strUrl = strView + "?&ExpandView&Count=999";

//gets the xmlHttpReq object - cross browser compatibility
try {

if (window.XMLHttpRequest) {
objXmlHttpReq = new XMLHttpRequest();

}
else if (window.ActiveXObject) {

objXmlHttpReq = new ActiveXObject("Microsoft.XMLHTTP");
}
objXmlHttpReq.onreadystatechange = function() {

if (objXmlHttpReq.readyState==4) {

Document generated by Confluence on Apr 04, 2008 19:03 Page 273

if (objXmlHttpReq.status==200) {
//call the function that will build the view

writeView(objXmlHttpReq.responseXML);
}

}
}

} catch(e) {}
try {

//closes the http requests
objXmlHttpReq.open("GET", strUrl, true);

objXmlHttpReq.send(null);
} catch(e) {}

}

//parses and prints the content
function writeView(xmlDoc) {

try {
//gets the root of the xml document

var objXmlRoot = xmlDoc.documentElement;
//get the toplevelentries attribute of the root - the total count of docs in

the view
arrNodes = objXmlRoot.getElementsByTagName("viewentry");

//start a table tag
var strResult = '<table border="1">';

//browser through all entries
for(var i=0; i<arrNodes.length; i++) {

intNumCols = arrNodes[i].getElementsByTagName("text").length;
strResult += '<tr> \n';
//goes thru all columns getting their html cell values

for(var intCol=0; intCol<intNumCols; intCol++){
//creates a new view

strResult += '<td>' +
arrNodes[i].getElementsByTagName("text")[intCol].childNodes[0].nodeValue + '</td>'

}
//closes the row

strResult += '</tr> \n';
}
//closes the table

strResult += '</table>\n';
//removes all Domino [and] row tags

strResult = strResult.split('[').join('').split(']').join('');
document.getElementById("view").innerHTML = strResult;

} catch(e) {}
}

This code results in producing a simple page that displays the content of that view on a table, row by
row, as shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 274

Resulting view example

Important
Remember that this example uses the JavaScript xmlhttp object. Therefore, Web pages that use
this technology only work if the user's browser is compatible with this technology.

We have shown an example of how to take advantage of AJAX capabilities to enhance the results display.
You can customize it according to the needs of your Web site.

Document generated by Confluence on Apr 04, 2008 19:03 Page 275

Searching via Domino URL commands

This page last changed on Apr 03, 2008 by jservais.

• Domino URL commands for search
° SearchDomain
° Redirect
° SearchSite
° SearchView

• Optional arguments for SearchSite, SearchView, and SearchDomain
• URL search syntax and customized results
• Customizing the Web results for SearchView
• Using navigational buttons for paged results

Domino URL commands for search

Search-related URLs are available to perform view, multiple-database, and domain searches. Typically
you define a URL that displays an input form to allow users to define their own searches. This can be a
customized search form or the default search form. A designer may also define a URL to perform text
searches without user input. Both the input and the results forms may be customized.

Attention
The URLs in the following sections are for example only. They are not intended to point to existing
Web sites unless specifically indicated.

SearchDomain

Use SearchDomain URLs for text searches across a domain. The search input form is opened with the
OpenForm command by name or universal ID. For search results, the results template is specified as part
of the URL. If no *template is found, then the default template form, $$SearchDomainTemplate, is
substituted. If $$SearchDomainTemplate is not found, an error is returned. If no results are returned, the
value of the $$ViewBody field remains the same.

Syntax
protocol://Host/Database/templateForm ?SearchDomain ArgumentList

Where:

• templateForm is an optional argument that calls the search results form.
• ArgumentList is a list of optional arguments.

Example
http://www.riverbendcoffee.com/mersrch.nsf/MercuryResults?SearchDomain

Document generated by Confluence on Apr 04, 2008 19:03 Page 276

http://www.riverbendcoffee.com/mersrch.nsf/MercuryResults?SearchDomain

Redirect

The server provides a direct or redirect URL command as needed for links that are displayed on the
results form if the capability has been enabled. The domain URL locates information on the server where
the links are generated. The redirect command locates the correct server, and redirects a link to that
server by constructing the appropriate URL. The redirect command can improve performance by resolving
individual links when they are selected instead of resolving all of the links returned at once. See Domino
5 Administration Help for information about enabling redirect on a server.

SearchSite

Use SearchSite URLs for text searches in multiple databases. Because the URL requires the name of a
search site database, be sure to create one before using a SearchSite URL.

Syntax
protocol://Host/Database/SearchForm?SearchSite ArgumentList

Where: $SearchForm and ArgumentList are optional arguments.

Example
http://www.riverbendcoffee.com/mercsrch.nsf/$SearchForm?SearchSite

SearchView

Use SearchView URLs to limit a search to documents displayed in one database view. This URL is useful
for views that show all documents (so that you can have a full-database search) or for views in which you
can predict what users need to see, such as all documents whose status is "Completed."

Syntax
protocol://Host/Database/View/$SearchForm?SearchView ArgumentList

Where: $SearchForm and ArgumentList are optional arguments. The special identifier $SearchForm
indicates that Domino will present a search view form for search input. If this identifier is provided, the
ArgumentList is ignored. If this identifier is absent, a default form is generated dynamically based on the
contents of the search.htm file located on the server. The default form generated by the server does not
support paged results.

Example
http://www.riverbendcoffee.com/products.nsf/By+Product+Number/$SearchForm?SearchView

Optional arguments for SearchSite, SearchView, and
SearchDomain

$SearchForm

Document generated by Confluence on Apr 04, 2008 19:03 Page 277

http://www.riverbendcoffee.com/mercsrch.nsf/$SearchForm?SearchSite
http://www.riverbendcoffee.com/products.nsf/By+Product+Number/$SearchForm?SearchView

The special identifier $SearchForm indicates that Domino will present a search site form for search input.
If this identifier is provided, ArgumentList is ignored.

ArgumentList

The ArgumentList must contain the Query argument. In addition, it may contain any or all of the other
arguments in any order:

• Query=string
Where string is the search string.

• Count=[n]
Where n is the number of results to display on each page until the SearchMax has been reached. For
example, Count=10 shows 10 results per page.

• Scope_=[1,2,3]_
The scope of the search, where 1 = Notes databases only, 2 = file system only, 0 = both. The
default value is 0. This argument should only be used with the SearchDomain command.

• SearchEntry=formName
Where formName is the name of the form to use for the results of a domain search. The default
argument is "ResultEntry," which supports all of the predefined results fields specified in the
ArgumentList. This argument is valid for SearchDomain only and should not be used for SearchSite
or SearchView.

• SearchFuzzy=[TRUE,FALSE]
Indicate TRUE for fuzzy search. The default is FALSE.

• SearchOrder=[1,2,3,4]
Indicate 1 to "Sort by relevance," 2 to "Sort by date ascending," 3 to "Sort by date descending." The
default is 1. SearchView also supports a SearchOrder value of 4 to "Keep current order," which sorts
the resulting set of documents in the order in which they appear in the view.

Important
Specifying SearchOrder=4 produces unexpected results if any of the following points are true:

° 1. The Count=n argument is used with a value less than the number of documents found.
2. The Start=n argument is used with a value other than 1.
3. The Default Search Limit is less than the number of documents found.
4. The Max Search Limit is less than the number of documents found.
5. If you need to specify SearchOrder=4, observe these recommendations:

- Never specify Count=n or Start=n
- Always specify SearchMax=0
- Set the Web site's Max Search Limit to a large value

• SearchMax=[n]
Where n is the maximum number of entries returned. The default value is determined by the server.

• SearchWV=[TRUE, FALSE]
Where TRUE = include word variants in the search. The default value is FALSE.

Document generated by Confluence on Apr 04, 2008 19:03 Page 278

• Start=[n]
Where n is the number corresponding to the document that appears first in your list of results. For
example, Start=10 begins your list of results with the tenth document found in the search. Start=0
means that paged results are not returned.

Examples
http://www.riverbendcoffee.com/mercsrch.nsf/?SearchSite&Query=product+info+requests&SearchOrder=2&SearchMax=30&SearchWV=TRUE&SearchEntry="myResultsForm"
http://www.riverbendcoffee.com/products.nsf/By+Product+Number/?SearchView&Query=PC156&SearchOrder=3&SearchMax=1&SearchFuzzy=TRUE&SearchWV=FALSE

URL search syntax and customized results

The following parameters for the SearchView and SearchSite URL commands allow you to display search
results page-by-page and to provide buttons or hotspots to navigate between pages.

Start and Count parameters
With the Start and Count parameters, you can display search results page-by-page and include them as
arguments in the SearchView or SearchSite URL commands or as items in the search results form. The
Start parameter is the entry that appears first when your results are displayed. The Count parameter is
the number of results that are shown on each page. For example, if Start=5 and Count=10, the search
results are displayed beginning with the fifth entry and show up to 10 entries per page until the
maximum number of entries is displayed. These parameters work with customized forms only.

Syntax
protocol://Host/Database/ViewName/$SearchForm?SearchView ArgumentList
protocol://Host/Database/ViewUNID/$SearchForm?SearchView ArgumentList

Where: ArgumentList includes the Query argument and any or all of the other arguments including the
Start and Count parameters, for example
?SearchView&Query=String&Start=n&Count=n&SearchOrder=n&SearchWV=TRUE or
FALSE&SearchFuzzy=TRUE or FALSE&SearchMax=n.

Examples
http://www.riverbendcoffee.com/products.nsf/ProductView?SearchView&Query=bicycles&Start=21&Count=20&SearchOrder=1&SearchWV=TRUE&SearchFuzzy=FALSE&SearchMax=50
http://www.riverbendcoffee.com/products.nsf/F6025FD7E72456F985256540005839D3?SearchView&Query=bicycles&Start=21&Count=20&SearchOrder=1&SearchWV=TRUE&SearchFuzzy=FALSE&SearchMax=50

Customizing the Web results for SearchView

To customize the Web search results page for SearchView:

1. Create a form and assign it one of the form names shown in the following table.

Form name Field required Comments

$$SearchTemplate for viewname $$ViewBody Associates the form with a
specific view. Domino requires
the $$ViewBody field, but

Document generated by Confluence on Apr 04, 2008 19:03 Page 279

http://www.riverbendcoffee.com/mercsrch.nsf/?SearchSite&Query=product+info+requests&SearchOrder=2&SearchMax=30&SearchWV=TRUE&SearchEntry=
http://www.riverbendcoffee.com/products.nsf/By+Product+Number/?SearchView&Query=PC156&SearchOrder=3&SearchMax=1&SearchFuzzy=TRUE&SearchWV=FALSE
http://www.riverbendcoffee.com/products.nsf/ProductView?SearchView&Query=bicycles&Start=21&Count=20&SearchOrder=1&SearchWV=TRUE&SearchFuzzy=FALSE&SearchMax=50
http://www.riverbendcoffee.com/products.nsf/F6025FD7E72456F985256540005839D3?SearchView&Query=bicycles&Start=21&Count=20&SearchOrder=1&SearchWV=TRUE&SearchFuzzy=FALSE&SearchMax=50

ignores the value. The form
name includes viewname, the
alias for the view, or, when no
alias exists, the name of the
view. For example, the form
named "$$SearchTemplate for
All Documents" associates the
form with the All Documents
view.

$$SearchTemplateDefault $$ViewBody Domino requires the $$ViewBody
field, but ignores the value. This
form is the default for all Web
searches that are not associated
with a specific form.

2. Add a field named $$ViewBody to the form.
3. If you want to display results page-by-page, add buttons or hotspots for forward and backward

navigation to the form.
4. Use the Start and Count parameters in your URL command.

For more information about the URL commands and search templates, refer to All Domino URLs and
$$SearchTemplate.

Using navigational buttons for paged results

Web searches over the Domain catalog can use any form through an OpenForm URL command, building
and invoking a SearchDomain URL command to perform the search on catalog.nsf database, supplying
arguments either as URL command arguments or through posted field values.

Single database searches over a Domino Web application can be initiated by using a
$SearchForm?SearchView URL command. In this case, Domino looks in the current database for a form
with the actual name or the alias name $$Search. If the form exists, Domino opens it. Otherwise, Domino
displays a default search form based on the search.h file stored in the Domino\Icons directory. The
$$Search form builds and invokes a SearchView URL command to perform the search, supplying
arguments either as URL command arguments or using posted field values. You can also customize the
default search.h form.

You may refer to the following table to customize a search form for the Web. The table provides a
detailed list of the URL command arguments that are used to execute an initial search through the
SearchDomain or SearchView URL. These values are available on the results page for use by buttons and
hotspots on the results form. For example, you may specify &SearchOrder=2 on your initial search form.
The field SearchOrder has a value of two in the results page. A Next button on the results form can use
this value for the next page or override it by specifying something else. This navigation process is
detailed in Customizing the search results display.

Tip
If you use editable fields on a search result form, select the option Web Access: Use JavaScript
when generating pages in the Database properties. If selected, a URL attached to a hotspot or
button is computed on the click event. If it is not selected, the URL is computed when the page is

Document generated by Confluence on Apr 04, 2008 19:03 Page 280

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SearchTemplate
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Customizing+the+search+results+display

loaded.

Although TRUE and FALSE can be specified for some of the fields, when the values are carried over onto
the results page they are 1 or 0.

Field Description

Query Search string used

Start Starting document number. 0 = unpaged

Count Number of results requested for this page. 0 =
unpaged

Hits Actual number of results returned this page, which
may be less than Count requested.
This field is useful in determining the Start
parameter for a Next button.

TotalHits Total number of hits found by the search.

SearchMax Maximum number of entries to return in total; 0 =
no limit.

SearchWv
(only for URL command)

Include word variants: 1 or 0.

SearchOrder
(only for URL command)

1 = By relevance
2 = By date ascending
3 = By date descending
4 = Use view order (SearchView only)

SearchThesaurus
(only for URL command)

Use thesaurus synonyms: 1 or 0.

SearchFuzzy
(only for URL command)

Use fuzzy search: 1 or 0.

SortOptions
(only for Notes client)

FT_SCORES = By relevance
FT_DATE_ASC = By date ascending
FT_DATE_DES = By date descending

OtherOptions
(only for Notes client)

FT_STEMS = Include word variants
FT_FUZZY = Use fuzzy search
FT_DATABASE = Search databases
FT_FILESYSTEM = Search file systems

SearchEntry
(Domain Searches only)

Name of the result entry form used.

SearchView
(only for SearchView URL command)

Text unique identifier of the view being searched.
This identifier is useful in building subsequent
SearchView URL commands.

Scope
(only for SearchDomain URL command)

Scope of search:
1 = Notes databases only
2 = File system only
0 = Both

The fields in the following table are available for use with the Start and Count parameters and should be

Document generated by Confluence on Apr 04, 2008 19:03 Page 281

added to the results form as needed.

Field Description

Hits The actual number of hits returned. This field is
useful in determining the Start parameter of Next.

TotalHits The total number of hits found without regard to
the number of pages.

Document generated by Confluence on Apr 04, 2008 19:03 Page 282

Searching via FTsearch and DBSearch

This page last changed on Apr 02, 2008 by jservais.

• The differences between FTsearch and DBSearch
• Examples of search implementations

The differences between FTsearch and DBSearch

In a Domino Web application, besides searching via Domino URL commands, a designer can implement
searches by using the FTSearch and Search (also known as DBSearch) methods for a word or phrase. The
DBSearch method searches for data by using a specific query pattern and returns a set of documents
based on the query. DBSearch has better performance than FTSearch. FTSearch uses the full text index
to search for all documents in a view or database that match a query string. The database does not have
to be full text indexed for FTSearch to execute properly. However the search takes longer if it is not. Just
like the search method, FTSearch returns a subset of documents based on the search criteria using the
NotesDocumentCollection LotusScript class.

These search techniques allow designers to implement search for documents by using conditions and
operators based on user inputs that can be passed via custom URL commands. Searching on a view using
Domino URL commands works best when the application has a full text index, which makes available
advanced search features and faster search capability. However, using FTSearch and DBSearch methods
can help find data by using more details.

Examples of search implementations

In the following example, we illustrate how to create a custom search results page with content
generated by arguments passed by the URL:

1. Create a simple search results form.
2. On this form, create a hidden computed field, called Query_String, that has as value the CGI variable
Query_String, that is used to get the query information about the URL.
3. Create a rich text field, called Body, to display your search results. Set this as a computed field with
the value Body, and enable pass-through HTML on this field paragraph.

Document generated by Confluence on Apr 04, 2008 19:03 Page 283

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+Domino+URL+commands
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/CGI+variables

Search results form details

4. Create and set a WebQueryOpen agent to this form.
5. Set the right basic and security properties for your WebQueryOpen agent, and use the following code
on the agent:

Sub Initialize

On Error Goto CommomErrHandler

Dim session As New NotesSession
Dim db As NotesDatabase
Dim collection As NotesDocumentCollection
Dim doc As NotesDocument
Dim docSearch As NotesDocument
Dim strQuery As String
Dim strResults As String

'//set the current database and the current form from the WebQueryOpen property of the
form
Set db = session.CurrentDatabase

Set doc = session.DocumentContext

'//gets the value to be searched from the right of the "&Query=" piece of the query
string
strQuery = Strright(doc.Query_String(0), "&Query=")

'//does a search on the database using the Search() method
'//Set collection = db.Search(strQuery, Nothing, 0)
'//does a search on the database using the FTSearch() method
Set collection = db.FTSearch(strQuery, 0)

'//displays an error message in case there are no documents
If collection.Count = 0 Then

doc.Body = "No document foud"
Exit Sub

End If

'//browse through the documents, displaying the results as links
strResults = ""

Document generated by Confluence on Apr 04, 2008 19:03 Page 284

Set docSearch = collection.GetFirstDocument
While Not docSearch Is Nothing

strResults = strResults + Chr(13) + |<p><a href="./0/| + docSearch.UniversalID+
|"> Unid: | + docSearch.UniversalID + |</p>|

Set docSearch = collection.GetNextDocument(docSearch)
Wend
doc.Body = strResults

Exit Sub
CommomErrHandler:

doc.Body = "Got error on agent #" + Cstr(Err) + " - " + Error$ + " on line " +
Cstr(Erl)

Exit Sub

End Sub

6. Create some documents to test your Search() or FTSearch() methods.
7. Invoke the agent by using a URL, for example:
http://riverbendcoffee.net/helpdb.nsf/SearchResultsForm?OpenForm&Query=SearchQuery, where
SearchQuery is the value searched.

Explanation of the model

The previous example illustrates a custom search interface created on-the-fly for Web users. It uses a
form to display links for documents found from a free text search over a database. It has a couple of
fields:

• A Query_String field to retrieve the user query portion from the URL
• A rich text repository field (Body) that has as unique function to receive the HTML code generated

from the search results

When that form is loaded, it expects to have a &Query= argument with the free text term the user wants
to bring from a database search. This is what the WebQueryOpen agent does in a and simple manner, it
get the query value of that argument in Query_String field of the form, and displays the results with links
to the users using the 0 view, and the document universal ID.

Document generated by Confluence on Apr 04, 2008 19:03 Page 285

http://riverbendcoffee.net/helpdb.nsf/SearchResultsForm?OpenForm&Query=SearchQuery

Search results page

Thus, there could have been much more improvements depending on the application. It could have an
input form where the user can use a form to submit search information via form GET, allow users to
manipulate the arguments on the URL via buttons or links, display results with a better look and feel
using descriptions on tables and style sheets, and much more. However, this is a simple option for search
interfaces that does not use Domino URL commands and should be used according to the application
needs.

Important
When choosing the methods to implement your search, keep in mind that the Search method has
much better performance returning the results than the FTSearch method. Only consider using
the FTSearch method in cases where a real full text search is needed. Also, remember that the
query syntaxes are different.

Tip
When displaying the results on a Web page, consider sorting the collection by a specific
parameter. To sort a NotesDocumentCollection collection by a specific criteria, refer to the article
How do you sort a document collection?.

Document generated by Confluence on Apr 04, 2008 19:03 Page 286

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Searching+via+Domino+URL+commands
http://www.notes411.com/dominosource/faq.nsf/0/6AA9F702B045D61D80256D6E007AC1D4!OpenDocument

robots.txt

This page last changed on Apr 03, 2008 by jservais.

• robots.txt
• Using robots.txt on Domino
• robots meta tag

robots.txt

The robots.txt file is a Web standard file that is used on the whole World Wide Web to declare what
search engines should not index from a Web site. This is an "old" technique, but is still helpful. By using
this file, you can select which files not to index, avoiding the display of private files on search engines.
This file is flexible and allows you to implement several rules in the same file to ensure distinct behavior
for bots.

The robots.txt files was created around 1994 by the members of the Robots mailing list. There is no
standards message or RFC for this issue. It is important to remember that robots.txt should not be used
to flag what should be indexed, but to indicate what should not be indexed. You need robots.txt, for
example, in an intranet with WWW access that has sensitive information for that company. Restrict areas
and personal documents that are hosted on your server in a specific directory for backup reasons that are
possible assets that you may want to prevent from getting indexed.

If you want a search engine to index your whole site, do not use robots.txt.

Using robots.txt on Domino

When creating a robots.txt file, keep the following considerations in mind:

• The robots.txt file is a text file that must be created by using plain ASCII text and should be saved
by using the "txt" file extension.

• This file should be on the root directory of your Web site. This is the first that a spider visits on a
Web site.

• The file should be written in lowercase and have the proper public read access to the world. If your
Web site root directory is your NSF file, you can upload your robots.txt to your NSF database as a
file resource. You can also create a page named robots.txt, insert its content on the design body,
and change its content type to text. For further information about this topic, refer to Page design
elements.

• Since Web crawlers consider subdirectories or subdomains as completely different Web sites, keep a
new version of the robots.txt file on every subdirectory with a new site or with sensitive data. For
example, if you have www.riverbandcoffee.com/ and www.riverbandcoffee.com/blog/ or
www.blog.riverbandcoffee.com, in which "blog" is an important subdirectory or subdomain with
some data that you do not want indexed, consider using robots.txt on that directory too. In case of

Document generated by Confluence on Apr 04, 2008 19:03 Page 287

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements

a subdirectory, you have the unique option to create a page, as described previously. You may also
consider using the robots metatag approach, described later in this section.

Important
If your Web site root directory is not your NSF database, you must upload the robots.txt file to
your Lotus Domino Web server root directory. For further information about this topic, refer to
topology.

There are basically two rules to declare on this file: User-Agent and Disallow. The User-Agent is used to
declare a specific agent. A User-Agent in this context is a search engine spider, like the Googlebot from
Google.

User-Agent: Googlebot

If you want all agents (and not only the Google robot) to index the content, use an asterisk as the value,
so that the search engines do not index.

User-agent: *

To block the whole site, use the root directory bar, as in the following example:

Disallow: /

To block a specific directory, enter the directory path, as in the following example:

Disallow: /private_directory/

To block a specific file, enter the file path, as in the following example:

Disallow: /private_file.html

You can use as many Disallow rules as you want. Start a new line on your file.

Important
Remember that URLs are case sensitive. Therefore, a page called Coffee.htm cannot be declared
as coffee.html.

robots.txt examples

The following example prohibits any robot from indexing the whole site:

User-agent: *
Disallow: /

Document generated by Confluence on Apr 04, 2008 19:03 Page 288

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Topology

An asterisk indicates everything or that all the robots should follow that rule. A practical example is
preventing indexing folders on your site from containing private information. The code in the following
example prevents for directories from being indexed.

User-agent: *
Disallow: /cgi-bin/ #scripts e and programs
Disallow: /login/
Disallow: /tmp/ #testing area
Disallow: /private/ #corporate files

The number sign (#) is used for comments. You can use this sign to explain the reason for excluding the
file, without impacting its usage.

If you do not have a robots.txt file, the tool indexes your site normally. It is the same as having the
following robots.txt file:

User-agent: *
Disallow:

The following example shows a more complex example. In the first lines, we declare that /directory/
should not be indexed by any robot. This rule should be followed by all spiders. Then, on lines 3 to 5, we
define that the Google robot, Googlebot, should not index /cgi-bin/ and /corporate/hr/ directories. Then,
in lines 6 and 7, we define that Yahoo robot, Slurp, should not index /corporate/accountancy/. Then, to
finish, on lines 8 and 9, we define that the MSN® robot, msnbot, should not index /msoffice_docs/
directory.

User-agent: *
Disallow: /private/
User-agent: Googlebot # Google (line 3)
Disallow: /cgi-bin/
Disallow: /corporate/hr/
User-agent: Slurp # Yahoo (line 6)
Disallow: / corporate/accountancy/
User-agent: msnbot # MSN (line 8)
Disallow: /msoffice_docs/

Tip
The robots.txt file does not affect the search results returned by Domino on the Web. If you want
to see which pages are brought by a search result, you may want to review your search query and
view selections, and implement security by using access control lists (ACLs) and Readers fields.
For further information about how to implement security on Domino applications, refer to security
considerations.

robots meta tag

If you do not have access to the robots.txt file, you can use another approach to prevent a page from
getting indexed. There is an HTML meta tag, called robots, that prevents spiders from indexing a Web
site. This tag has a property that can have a pair of values, brought by the combination of these options:
index, follow, noindex, and nofollow. Index and follow are the implicit defaults for this tag. The index
option allows a page to be indexed, and follow allows its links to be indexed. The noindex option prevents

Document generated by Confluence on Apr 04, 2008 19:03 Page 289

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Security+considerations
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Security+considerations

indexing the page, which means not to put the page in the search results. The nofollow value prohibits
following the links on this page in the index. If no other pages point to the same pages as the links on
this page, this can have the same effect on those pages as a noindex on those pages. However, since
anyone using any Web page can deep-link to those pages, this can fail. In the following example, a robot
indexes the page and follows all the links on the page:

<meta name="robots" content="index,follow" />

In the following example, a robot indexes the page, but treats it as a "dead end" and does not follow any
of the links on it.:

<meta name="robots" content="index,nofollow" />

In the following example, a robot skips over the page, without indexing its content, but continues
indexing all the other pages to which this page links:

<meta name="robots" content="noindex,follow" />

In the following example, an ethical robot neither indexes the page nor follows any of its links. It
considers this page as nonexistent on their indexes.

<meta name="robots" content="noindex,nofollow" />

This approach has the problem of being implemented in hypertext files, preventing its use for such files
as PDFs or DOCs. Thus, robots.txt have a higher scale than this approach, but both have their
importance.

For further information about how to insert meta tags on your pages, refer to Common design properties
on Web applications.

Important
Despite the fact that the most reliable search engine robots respect the Web site indexing rules
defined on the robots.txt file, do not expose sensitive data to the World Wide Web. "Thief spiders"
can crawl your Web site to search for sensitive data. To avoid this, you must implement efficient
security by using such techniques as firewalls, files access control, and ACLs. For further
information about how to implement security on Domino applications, refer to security
considerations.

Document generated by Confluence on Apr 04, 2008 19:03 Page 290

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Common+design+properties+on+Web+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Common+design+properties+on+Web+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Security+considerations
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Security+considerations

Search engines and search engine optimization

This page last changed on Apr 02, 2008 by jservais.

Search engine optimization (SEO) is the technique of preparing Web sites and Web pages to achieve
better ranking on the search engine results, without infringing their rules. A search engine, also known as
crawler or search site, is a Web portal where users can search for a something using natural terms. SEO
is the best way to create qualified Web site traffic and is an ever-growing trend of the Internet. The term
site optimization is related to marketing optimization, but is more specific in that the SEO wills to qualify
Web site or pages to figure in more competitive searches.

SEO is a must-have in order to increase Web site traffic and reach new visitors. Search engine traffic also
has the advantage of being pre-qualified. Therefore, if the business of a site is selling cars, it does not
make sense to receive visitors who are interested in botanical gardening. This visitor focus increases the
importance of a Web site, helping business growth.

Introduction and panorama

When the Internet first began, there were no search engines. Users had to browse through directories to
find a Web site. A directory is a list of sites that are manually selected by people (editors) and
categorized. The users had to browse by category and subcategories, until they found an interesting link.
Directories have no ranking. All pages are listed under the same category. When users noticed that
search engines were much easier to use and had better results than directories, they became the most
common tools for finding information on the Internet.

Yahoo! is the most famous directory available and was also the most commonly used search engine.
Today, Google is the most used search engine in the world, with more than 50% of the world searches
(Source: Nielsen/NetRatings MegaView Search, May 2007). Google is commonly used for direct and
indirect searches in other Web sites. Google was also created by academics, who have several papers
regarding its structure. In addition, Google had focus on profitability and partnership, which helped it
reach great success.
Google is a large scale search engine that intensively uses hypertext. It was projected to efficiently track
and index the Web and produce more satisfactory results than any other existing systems.

Creating a search engine is a defying project. Search engines index dozens of millions of Web pages that
contain diverse comparable search terms. They have to answer to millions of searches daily. Despite all
the importance of search engines, there is not much academic research in this topic. In addition, due to
fast paced Web market growth, creating a search engine today is much more difficult than it was some
years ago. At this point, application designers should focus on achieving better ranking on search engines
results to promote their company's business.

Document generated by Confluence on Apr 04, 2008 19:03 Page 291

SEO techniques

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Legal techniques
• Illegal techniques
• Domino techniques
• Complex search engine techniques

Introduction

Search engine optimization (SEO) techniques are a method to improve search results ranking. These
techniques involve a series of steps and may require the reformulation of an entire Web application. We
provide some examples of these techniques in the following sections.

Legal techniques

Legal techniques are recommended and fair techniques that are used to improve ranking on search sites
search results. We describe these techniques in the sections that follow.

What a site does

The first step to improve ranking is to think about what a Web site does. Then, define which keyword
relates to the Web site. In our example of the Riverbend Coffee and Tea Company, you can have a group
of words such as "Riveband Coffee," "Brazilian Blended Coffee," and "Chinese Tea."

To validate your keywords, try searching for them on a search engine. Watch how your top-rated
"competitors" are disposed and focus on your target audience. Then, keep your words in mind, together
with your business, and use the tips offered in the following sections.

Have a descriptive URL and domain

Have part of your keyword on your Web site URL, for example: www.riverbendcoffee.com.
To understand how to implement subdomains of your Web site, refer to Installing a Web site.

Use subdomains

Document generated by Confluence on Apr 04, 2008 19:03 Page 292

Create subdomains to have the URL word and more links, for example:
www.brazilian.riverbendcoffe.com.

Have a descriptive site title

Have your keywords on the title tag. Refer to what the site or the page that the user is visiting is about.
Consider the following example:

<title>Brazilian Coffee</title>

To understand how to change this tag, refer to Common design properties on Web applications.

Add a site description

The Web site description is used by robots to describe your document on search sites. This description
should created by using the description meta tag. Most of the search engines restrict to something
around 200 characters. Sites with big descriptions are generally discarded from searches. Therefore,
consider using a small and efficient description with less than 120 characters. Consider the following
example:

<meta name="description" content="High quality blended Brazilian coffee. Unique Chinese teas.
Wi-fi hotspots available on kiosks." />

To understand how to change this tag, refer to Common design properties on Web applications.

Have keywords listed

Keywords help your site to be identified on by crawlers. Therefore, be careful in choosing the right words.
Some sites recommend that you use many words on the tags, but this technique deprecated due to some
Web sites using illegal techniques for ranking. Today you use at most three to five words in your
keywords tag. It is important to have the words match the page content. Consider the following example:

<meta name="keywords" content="Riverbend, Brazilian coffee, Chinese tea" />

To understand how to change this tag, refer to Common design properties on Web applications.

Use the content-type meta tag

Content-type is an important meta tag to search engines. This tag informs the crawler of the type of
content that is hosted on that page, helping them to categorize their listing. It also shows that you are
following World Wide Web Consortium (W3C) guidelines, which is an indication that your have a serious
Web site. The following example shows the syntax that is used in this tag:

Document generated by Confluence on Apr 04, 2008 19:03 Page 293

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Common+design+properties+on+Web+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Common+design+properties+on+Web+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Common+design+properties+on+Web+applications

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

To understand how to change this tag, refer to Common design properties on Web applications. The
charset property can also have several different values, according your content type. For further
information about this topic, refer to Changing the content type of a design element and Working with the
DOCTYPE.

Create links

Have links that point to your pages (back links). If a page is pointing with a term to your page, the
search engines understand that your Web site refers to that subject. Make partnerships.

Have a site map

A site map is a page in your site with an index that shows all site pages and their subjects. When the tool
craws the site map, it has all the links that comprise your site. This procedure hastens the search engines
works, because the more links a crawler has to navigate deeply to find information, the less "valuable" it
is going to be ranked.

A site map example from the Lotus symphony Web site

Use the proper text markup

Use the proper markup text in your page. Put header information in headers (using h1, h2, h3 tags),
place text in paragraphs (using p tags), and use ordered and unordered lists (using li and ul tags) and
tables (table tags) to help spiders understand what is important on a page. Use style sheets to reduce
content pages size and help your work. The most important is highlighting the information by using the
proper tags according to their importance.

Document generated by Confluence on Apr 04, 2008 19:03 Page 294

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Common+design+properties+on+Web+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Changing+the+content+type+of+a+design+element
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+the+DOCTYPE

Tip
Rich text content in Lotus Domino is not converted to any special HTML tags when translated.
Notes only converts body font sizes to an HTML font size correspondent. It does not create tags
such as h1 for example. Therefore, use pass-through HTML to use the proper text styles on a Web
page. For further information about the translation process, refer to Styling text for the Web.

Have accessible images

Use descriptive file names for your images and the alt and title attribute of the img HTML tag. This helps
indexing, is an HTML standard, and is also an accessibility must-have for people with reading disabilities.
Consider the following example:

<img src="coffee.gif" alt="Brazilian blended cup of coffee" title=" Brazilian blended cup of
coffee" />

Use intuitive files and directory names

Use intuitive files and directory naming. It is much more human understandable to use a contact page
browsing through "/contact/talk+to+us.html" than to use "/cgi/contact.cgi".

Tip
On Domino, use view indexing by name instead of strange identifiers. This technique is described
later in the section.

Brand, marketing and type-ins

Brand recognition is a heavy aspect. Having a popular well-known brand helps when searching for a
product. When we think about an information technology company, it is easy to think about Web sites
such as www.ibm.com. However, in the beginning of the Internet, such Web sites as Amazon and e-Bay
invested millions in marketing to have clients knowing their services. Today one of the most common
trends is to use type-ins, which are words that have good relation to a Web site business. A good
example of type-in is for the domain name creditcheck.com, which was sold by US$3 million. Unless you
have a famous brand or an old well-known Web site, type-ins are a highly recommended SEO technique.

Have some link exchanging

Another known method is link exchange. You send traffic to a business partner via links to their site, and
your partner gives your traffic via links to your Web site. This kind of reference helps to improve the
ranking of each other.

Submit your site to search engines manually

Manually submitting your site to the main search engines is a good technique and increases your Web
site reliability. Many companies do not appear on search results because of indexing issues.

Document generated by Confluence on Apr 04, 2008 19:03 Page 295

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Styling+text+for+the+Web
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Planning+for+accessibility+and+compliance

Create page clouds

Page clouds are visual depictions of keywords on a page. A tag cloud is composed of several words in
links, with higher fonts to most important topics. Tag clouds allow users to check the most relevant topics
of a page, using an intuitive interface. Search engines such as tag clouds and good clouding help to rank
your Web site pages according to their relevance.

Example of a tag cloud

Refer to Web 2.0 primer for more information about this topic.

Do a semantic analysis revision

Despite the fact that search engines index each word in a text, they are not used to do semantic analysis.
That is, they do not try to interpret a group of words. For example, consider a page that only has the
phrase: "This page has information about Brazilian blended coffee - click here." The it could have a
smaller ranking than a page that contains the text: "Brazilian blended coffee cafeterias Chinese coffee
hotspots - click here." Since this second example is clearly willing to manipulate ranking through the use
of word repetitions, the first example is definitely a more reliable information source.

To avoid this technique, search engines are starting to implement semantic analysis on their robots.
Therefore, consider doing a semantic analysis revision for avoiding have your site banned from indexes.

Validate your code

Having Web sites that use well-formed and validated markup languages optimizes search engines results.
This happens because the search engine parsers need to go into the right tags of your HTML markup
code, for example, into the head of the body language of your page. If the language is not well-formed,
the crawlers may skip it. The most important search engine optimization code validations are checking
HTML, CSS, and ensuring that you have no broken links or images. W3C has a tool that analyzes all of
these items at http://validator.w3.org/ . Having this all set will help you optimize your ranking.

Document generated by Confluence on Apr 04, 2008 19:03 Page 296

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+2.0+primer
http://validator.w3.org/

Attention
Do not submit pages with sensitive corporation to any validation, translation, or validation
services.

Illegal techniques

Other techniques can improve search engine ranking. These techniques are considered dangerous and
unethical and are condemned from search engines. Search crawlers are banning and blacklisting Web
sites that use these type of malicious techniques. Therefore, we recommend that you avoid them on your
Web site. Consider checking if these techniques are being used on your site even if involuntarily. We
describe some of these techniques in the following sections.

Adding invisible text

Inserting a keyword in invisible sections is considered spam. This anti-ethical technique is generally
created by using text that search engines robots can read, but not people. This includes invisible layers
and text with small fonts or that use the same color of the page background.

Duplicating content

Duplicating content using two URLs to same information is another spam technique.

Attention
The issue of duplicating content is involuntarily created on Domino URLs because views create
links by using universal IDs. Make sure to use only one type of URL when linking your application.
Remember it is better to use
www.riverbendcoffe.com/home.nsf/coffe+types+view/Brazilian+Blended+Coffee than to use
www.riverbendcoffe.com/home.nsf/view/E382A2533B2467F3651E1347B03C9321. You can avoid
this by creating your own links or customizing the view links. For further reference on this topic,
refer to View design elements.

Associating words different from the Web site content

A condemned technique is associating words to a Web site that does not match the site content. This
technique is often used on the site title, keywords, or description or in the page content. This technique
reduces the reliability of your site to its visitors (they will probably not visit it again), and your editors will
be classified as spammers. The HTML elements, such as title, meta, h1 and other, were designed for the
authors to describe the subject that is discussed. Several spammers exploit the failure by using highly
searched terms to expose other media, including pornography and online gambling.

Creating random pages

Spammers create millions of random pages, with slightly variations of density and usage of headers to
increase the ability of search engines to search for certain topics. This is one of the most condemned
spam techniques for search engines.

Document generated by Confluence on Apr 04, 2008 19:03 Page 297

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements

Using link farms

In the early 2000s, with the ever-growing concept of link popularity, several Web developers created
communities that are willing to link each other, creating link farms. Search engines are starting to
cross-reference anti-ethic links and ban these sites from search results.

Domino techniques

There are several techniques, as explained in the following sections, to help your Domino Web site to get
optimum results on search engines.

Make the page titles dynamic

Use relevant keywords to create dynamic page titles that display the correct content of a page. Consider
using @Formula to do this on the Window title property of a design. This method increases page ranking.

Create descriptive URLs by using keywords instead of the universal ID

Notes documents are accessible on the Web by URLs with their keys in a view, such as
./viewname/key?OpenDocument. In most applications, the key that is used is the document universal ID,
which is bad for the following reasons:

• If a user replaces the content of a page by another Notes document, any links to that Web page
made by search engines are removed. If a page is referenced by the universal ID and that ID
changes, any external links to that link become broken. Since search engines give pages a better
ranking based on links, your page will also lose ranking with the search engines if you use IDs on
URLs.

• Search engines give a better ranking to pages with keywords in the URL. Which of the following
URLs do you think is better for buying blended coffee?

° www.riverbendcoffe.com/home.nsf/coffe+types+view/Brazilian+Blended+Coffee
° www.riverbendcoffe.com/home.nsf/view/E382A2533B2467F3651E1347B03C9321

Remember that when linking by using keys, the keys must be unique. If keywords do not help you
because of the dynamics of your Web site, try to make your URL IDs permanent by using @Unique.

When calling design elements, consider using the Design element multi-aliasing technique. With this
technique, you have a form called "Top rated product vendor|vendor.htm|vendor". This naming
convention also provides the benefit of having an alias that works like a traditional Web server "file
name" for Domino URLs, helping to keep aliases even if the main page content changes. This convention
also helps search crawlers to increase the page rank by using the search engine optimization best
practice of having a small description of the page on its URL. When linking, make the links to only one
instance of the design to avoid duplicating content.

Create your own links by using HTML for views linking

Document generated by Confluence on Apr 04, 2008 19:03 Page 298

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Design+element+multi-aliasing
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs

Notes views use Universal ID linking to document linking by default. Change this code to use your own
view IDs instead.

Use "!" instead of "?" on Domino URLs commands to open documents

The part that comes after the question mark on a URL is called the query string. A CGI variable is

available to compute this portion of the URL. When a URL has a query string, search engines consider
that page as having content that is generated on-the-fly that could cause the search engine to may fall
into an infinite loop while indexing that page.
The problem is that the Domino server publishes all the pages by using the ? as the separator for URL
commands. Since some search engines have heuristics to avoid these pages because of malicious
scripting or infinite looping, Domino provides a mechanism to replace the ? with an exclamation point (!),
such as ...!OpenDocument. To set this on your application, you must adjust the Web site configuration
document in the Domino Administrator to give access to search engine site crawlers. This setting does
not help hard-coded URLs.

Tip
You can also remove the "OpenDocument" URL command without impacting your application,
since it is optional. If any code parses query strings because of scripting, make sure that it is
compatible with this change.

Avoid using JavaScript functions for linking

Avoid using JavaScript for page linking. Most crawlers do not interpret JavaScript as a Web user and can't
navigate deeper on a Web site's structure while crawling. Use HTML <a> tags for menus and links and to
submit pages. Use JavaScript only to improve a user's experience on a Web site, but not to build core
linking mechanisms.

Create an HTML image resources reference instead of rich text

Since Domino does not properly use SEO references to Notes rich text images, consider using the
tag with the alt attribute by using a pass-through HTML to reference them. This method helps the crawler
understand to where that link image will point.

Place subforms in order of importance

Search engines consider links that are displayed at the top of a page more relevant than the others listed
to the bottom of the page. Therefore, consider using CSS positioning to block like menus or navigators,
placing the more relevant code near the top of a Web page. CSS also reduces the total size of a Web
page itself, since crawlers do not use spider style sheets.

Complex search engine techniques

In the following sections, we present complex search engine techniques to improve ranking.

Document generated by Confluence on Apr 04, 2008 19:03 Page 299

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/CGI+variables
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs

Page rank

A page rank is a link analysis algorithm that assigns a grade to each element of a group of pages with the
purpose of "measuring" its importance within the set. This page rank denotes a site's importance. There
are two types of best practices to increase a page page rank by using keywords. One uses votes (links),
and the other depends on how the Web site was built.

• Best practices without voting:
° Use the site keyword in the URL.
° Use the site keyword on the title.
° Have no hidden text.
° Use alts on images.
° Use static URLs instead if dynamic URLs. Use Domino URLs for view indexing instead or using

ID indexing.
° Create sites with many pages, but with low content (from 700 to 1500 words).
° Use a good variety of words on the site pages, but with a focus on your business.
° Update your site regularly. The more a Web site gets updates, the more the robots index your

pages.

• Best practices with voting:
° Have references from other Web sites.
° Have links from sites that are top ranked with the same words.
° Have links from one page to another on the same site with the same keyword.
° Add your site to directories.
° Reach votes from important Web sites.

sitemap.xml

Search engines want to ensure that users receive the most relevant results as possible. There are
programs that help ensure that pages get cached in their indexes as fast as possible. They call this
program a site map. A site map is used by the most used search engines available today. Several
sitemap.xml file generators are available on the Internet. In Domino, you create your own sitemap.xml
file by using a page. Create a page and call it sitemap.xml. Then, change the content type to XML and
add content according to your site information. For further help about this topic, refer to Page design
elements.

You also can get help in creating your own sitemap.xml file for your Web site at the following address:

http://www.google.com/webmasters/sitemaps/docs/en/about.html.

Document generated by Confluence on Apr 04, 2008 19:03 Page 300

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Page+design+elements
http://www.google.com/webmasters/sitemaps/docs/en/about.html

URL considerations

This page last changed on Apr 02, 2008 by jservais.

• User friendly URLs
• Web site rules

User friendly URLs

It is important to have easier-to-understand Web addresses that make it easy to communicate,
remember, and pass on by word of mouth, e-mail and so on. A friendly Web address should be short
enough to be pasted in an e-mail without wrapping, which can break it, and should also be easy to type
in a browser or mobile device.

By default, Domino produces Web addresses that are lengthy, hard to remember, and can be difficult to
type. By using a bit of creativity and Domino Web site rules, you can eliminate most of these URL issues.
It's not just Domino, many application frameworks use a query based Model-view-controller (MVC)
architectural pattern, which makes the URL look more like machine code. To be fair, by default, Domino
builds URLs it knows are unique and can always be resolved. The unique document ID of the document
plays a big part, even though 32 character hexadecimal is not easy to work with.

Let's start with an original simple HTML URL such as http://astrology.yahoo.com/chinese

http://www.riverbendcoffee.com/directoryname/filename

Thanks to Dominos document access URLs

Using Domino URLs to access a document

To open a document by key, create a sorted view with the sort on the first key column. Then you can use
a URL to open the document by using the following syntax:

http://Host/DatabaseName/View/DocumentName?OpenDocument

Where View is the name of the view, and DocumentName is the string, or key, that is displayed in the
first sorted or categorized column of the view. Use this syntax to open, edit, or delete documents, and to
open attached files. Domino returns the first document in the view whose column key exactly matches
the DocumentName.

There may be more than one matching document. Domino always returns the first match. The key must
match completely for Domino to return the document. However, the match is not case-sensitive nor
accent-sensitive.

Document generated by Confluence on Apr 04, 2008 19:03 Page 301

http://en.wikipedia.org/wiki/Model-view-controller
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs
http://astrology.yahoo.com/chinese
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs#AllDominoURLs-UsingDominoURLstoaccessadocument
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs#AllDominoURLs-UsingDominoURLstoaccessadocument

How does this help and what do I do now

You do not need the ?OpenDocument. Do not use it if you can avoid it. Use the database Replica ID
instead of the DatabaseName. Database names, such as directory/help.nsf, are confusing and break if
you move the database. The problem is not with links within a database. You can use
(Replacesubstring()Subset(@DbName;-1);" ";"/")

How do you find the database name for a companion database you are linking to? Replica IDs can be
stored in keyword documents and looked up by the database keyname, for example helpDB. Use
@ReplicaID when working internally in Notes for @lookup (Replacesubstring()ReplicaID;":";"") and use
in place of the DatabaseName.

Create a simple view for all published documents. Call this view something simple such as "pages", , or
create an alias for it. In the View properties box, select Show multiple values as separate entries so
that alias page names can be created.

Column 1 contains the page name and is sorted in ascending order. Deselect Show response
documents in a hierarchy to create a "flat" view.

The page name can be derived from the page title or a page name entered by the user. The page name

Document generated by Confluence on Apr 04, 2008 19:03 Page 302

needs to be unique and meaningful to a user. If your information is hierarchical, you can concatenate the
page names, for example, products-accessories-warmers. This makes it easier to keep a page name
unique. You can have alias page names by creating lists for
example,Trim()Unique(pagename:(pagename+".html"):(pagename+".htm"):anothername).

We now have something that looks like the following example:

http://www.riverbendcoffee.com/8025741C007AAC09/pages/products-accessories-warmers.htm

Column 2 contains an alternate sort. By using reader fields and duplicate page names, you can present a
different view for different users. Since this method always uses the first one it finds in the view, you can
stack potentially hidden documents but "fall through" to public documents. One use could be for multiple
language support. For example, with the English pages alternate sort, put them on the bottom of the
stack. Then non-English speakers can find the document with their group in the reader fields, and people
with no language group assigned arrive at the English page, which has no restrictions.

Column 3 contains the unique document ID. This is convenient if you are checking for duplicate page
names. A lookup on the pagename can return a unique document ID. If nothing is found or it returns the
document ID of the document you are in, then you have no duplicates. Otherwise you have duplicate.

Web site rules

Use Web site rules to hide the Replica ID. In the Domino Directory under Configuration-> Web->
Internet Sites, you can set-up rules for your sites. Use the following table to map /pages to your pages
view.

Basics

Description: Pages

Type of rule: Substitution

Incoming URL pattern: /pages

Replacement pattern: /8025741C007AAC09/pages

We now have something that looks like the following example:

http://www.riverbendcoffee.com/pages/products-accessories-warmers.htm

You can use Web site rules to deal with the required ?EditDocument or ?OpenForm. Use the following
table to map /edit to your pages view so that you can open the document in edit mode.

Basics

Description: Edit

Type of rule: Substitution

Incoming URL pattern: /pages/*

Replacement pattern: /8025741C007AAC09/pages/*?EditDocument

Document generated by Confluence on Apr 04, 2008 19:03 Page 303

We now have something that looks like the following example:

http://www.riverbendcoffee.com/pages/products-accessories-warmers.htm

Alternatively, you can open a form by name only.

Basics

Description: Forms

Type of rule: Substitution

Incoming URL pattern: /forms/*

Replacement pattern: /*?OpenForm

We now have something that looks like the following example:

http://www.riverbendcoffee.com/forms/survey

You can also use this to allow site developers or administrators to create constant user-friendly URLs and
map them to specific documents or views.

For example, consider the following URL:
http://www.riverbendcoffee.com/E7A291052E43215E852567240071E2AD/2A6E67721D53C50D8025741C007BA6E1?OpenDocument

It can be mapped to this URL:
http://www.riverbendcoffee.com/sale

For more information about Web site rules, see the great DeveloperWorks article Building Web
applications in Domino 6: Web site rules

Add more of your URL mapping best practices here.

Document generated by Confluence on Apr 04, 2008 19:03 Page 304

http://www.riverbendcoffee.com/E7A291052E43215E852567240071E2AD/2A6E67721D53C50D8025741C007BA6E1?OpenDocument
http://www.riverbendcoffee.com/sale
http://www.ibm.com/developerworks/lotus/library/ls-Web_site_rules/index.html
http://www.ibm.com/developerworks/lotus/library/ls-Web_site_rules/index.html

User management

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Registration database
• Extranet address book

Introduction

Most Web applications have different types of users. You might have a technical Web site that has
dealers, distributors, and content editors or a CRM Web application that has salespeople, department
managers, and executives. Each user group sees a different menu, content, and has a different access
level.

Notes developers have been using groups and roles for security (authors/readers field). We set up
different groups, add users to members of the groups, and assign the groups specific roles. In addition to
security, we also use them to show/hide certain functionality in our application.

Domino administrators would surely benefit from a system where users can register themselves, and
once they are registered, they are automatically added to the proper groups. Moreover, the users can
change their password and reset their password (if they forget their password).

Registration database

The registration database store registration documents and has the following options available to users:

• New registration
• Change password
• Forgot password

New registration

Before users can access the Web site, they must complete a registration form as shown in the following
example.

Document generated by Confluence on Apr 04, 2008 19:03 Page 305

The form has basic contact and password information. The security question and answer are required for
the Forgot Password feature.

You have several options after the registration is submitted depending on your needs. Here are the most
common scenarios:

• Immediately add the user to a group in the address book.
• Notify the web application administrators to approve the registration. Once approved, the user is

added to a group in the address book.
• Push the registration to a workflow system and route it to the appropriate people. The responsible

people can select into which group the user needs to be placed.

In any case, you need a routine to add a user to a group. The following sample code can do that. It takes
into account the 15K (around 1000 members) text list limitation (which may be increased in Lotus Notes
8) by creating subgroups under the main group. For example, if the main group is called Dealers, the
subgroups are Dealers 1, Dealers 2, Dealers 3, and so on. The Dealers group will contain Dealers 1,
Dealers 2, Dealers 3, and so on.

Sub AddUserToGroup(Byval fullname As String, Byval group As String, nab As NotesDatabase)

' Load up our static groups view

Dim groups As NotesView

Document generated by Confluence on Apr 04, 2008 19:03 Page 306

Set groups = nab.GetView("($VIMGroups)")

Dim groupMainDoc As NotesDocument
Set groupMainDoc = groups.GetDocumentByKey(group)
Dim saveGroupMainDoc As Integer
saveGroupMainDoc = False

If groupMainDoc Is Nothing Then
Set groupMainDoc = New NotesDocument(nab)
groupMainDoc.Form = "Group"
groupMainDoc.ListName = group
groupMainDoc.Members = group & " 1"
groupMainDoc.GroupType = "0"
Call groupMainDoc.ComputeWithForm(False, False)
saveGroupMainDoc = True

End If

Dim groupMainMembers As NotesItem
Set groupMainMembers = groupMainDoc.GetFirstItem("Members")

' Find last subgroup entry in the members list

Dim subGroup As String
subGroup = ""
Forall s In groupMainMembers.Values

If Left$(s, Len(group)) = group Then
subGroup = s

End If
End Forall

' Open the subgroup, and keep trying until we find one with room

Dim groupNum As Integer
groupNum = 0

' Which subgroup was the last one
If subGroup <> "" Then

groupNum = Val(Right(subGroup, Len(subGroup) - Len(group) - 1))
Else

groupNum = 1
subGroup = group & " 1"

End If

Dim groupSubDoc As NotesDocument

Do
Set groupSubDoc = groups.GetDocumentByKey(subGroup)

If groupSubDoc Is Nothing Then
' Create a new subgroup document

Set groupSubDoc = New NotesDocument(nab)
groupSubDoc.Form = "Group"
groupSubDoc.ListName = subGroup
groupSubDoc.GroupType = "0"
Call groupSubDoc.ComputeWithForm(False, False)

' Add it to the main group if needed
If Not groupMainMembers.Contains(subGroup) Then

Call groupMainMembers.AppendToTextList(subGroup)
saveGroupMainDoc = True

End If
End If

' See if the subgroup still has room, if so, we've found our subgroup

Dim groupSubMembers As NotesItem
Set groupSubMembers = groupSubDoc.GetFirstItem("Members")

If groupSubMembers.ValueLength < 10000 Then
Exit Do

End If

' If no room, try the next one

groupNum = groupNum + 1
subGroup = group & " " & groupNum

Loop

Document generated by Confluence on Apr 04, 2008 19:03 Page 307

' Finally: add the user to the subgroup
Call groupSubMembers.AppendToTextList(fullname)
Call groupSubDoc.Save(False, True)

If saveGroupMainDoc Then
Call groupMainDoc.Save(False, True)

End If

End Sub

Change password

The following figure shows a sample Change Password form. In this example, we use the e-mail address
that is specified to look up the user. If you enable the Change Password feature when the user is logged
in, you do not need the e-mail address.

Tip

Since the password in the person document is encrypted, we cannot directly compare the old
password with the password stored in the person document. However, you can use the
@Password formula to encrypt the old password that is typed by the user and compare the value
with the password (in the HTTPPassword field) that is stored in the person document.

Forgot password

This feature is usually placed on the login form. In the following figure, we use the e-mail address that is
specified to make sure the user exists.

Document generated by Confluence on Apr 04, 2008 19:03 Page 308

If the user is found, we take the user to the second page shown in the following figure.

The security question and answer ensure that the user is really the person who is associated with the
account or e-mail address.

Extranet address book

Consider using a separate address book, if you do not want the users of your Web application to be in the
same address book as your company's address book.

• Use Directory Assistance to set up the extranet address book.
• Put the groups in the company's address book and the person documents in the extranet address

book to ensure that the users can log in if you use single sign-on (SSO), LDAP or both. Note: This
may not be necessary in the newer version of Domino (7 or later).

Document generated by Confluence on Apr 04, 2008 19:03 Page 309

Using interactive data and Web services

This page last changed on Apr 02, 2008 by jservais.

• Introduction
• Web services and Domino development
• Defining APIs for Domino applications

Introduction

In this section, we discuss the various interactive data models and how we can better use Web services
to provide our user audience with rich client experiences for our Domino Web applications.

Web services and Domino development

The Domino Web service engine provides a built-in capacity within the Design Element catalog to create
interactive data models for our Domino applications. By using Web services in our Domino development
practices, we can deliver and maintain Domino data to more advanced user interfaces, client types, and
devices as well as create a merge-point for integration with third-party technologies and solutions.

After we begin to leverage Web services-based architectures in our Domino development, our
applications evolve from conventional Domino form design element data maintenance engines to more
global community and industry recognized methods. See Web service design elements for information
about creating Domino Web service design elements.

Defining APIs for Domino applications

We have the ability to extend our current application development techniques through the utilization of
interactive data models and Web services. In the following sections, we discuss the creation of integration
APIs for Lotus Notes, Hybrid, and Domino Web applications.

The definition and utilization of a Domino Application API furthers a global community initiative to
separate UI and visual representation of data from the data itself. This is often not a concept that is used
by Domino developers. However we can immediately see the benefit from the separation of data and UI
first through the integration with other technologies and solutions as well as the flexibility that such a
separation affords in our solution development.

For example, the maintenance of multiple selected documents from a rendered view is something that
can easily be accomplished after we seperate the maintenance of data from the typical visual rendering of
the data. For this example, we need the following Domino design elements:

• View Design Element: markup

Document generated by Confluence on Apr 04, 2008 19:03 Page 310

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+service+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+service+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Application+programming+interface
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+design+elements

• Form Design Element: $$ViewTemplate for markup
• Agent Design Element: docmod

We combine these Domino design elements to create a functional document maintenance engine which
hopefully illustrates an initiation to separate the data from the user interface.

{code:xhtml|title=Form Design Element
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Examples - $$ViewTemplate for markup</title>
</head>

<body>
<form name="viewbody" action="docmod?openagent" method="post">

<table>
<thead>

<tr>
<td class="col0"></td>
<td class="col1">Last Modified</td>

</tr>
</thead>
<tbody>

$$ViewBody
</tbody>

</table>
<input type="submit" value="Update" />
</form>

</body>
</html>
{null}
In the previous code sample, _$$ViewBody_ represents the location of the _$$ViewBody_ Field
Element.

The following combination of _the markup_ view design element and _$$ViewTemplate for
markup_ form design element (each whose contents are set to text/html), render the
results shown in the following figure when the view design =eElement is displayed in a
Web browser client.

!markup_renderedexample.gif!
{code:xhtml|title=Rendered _markup_ Source Code}
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Examples - $$ViewTemplate for markup</title>
</head>
<body>

<form name="viewbody" action="docmod?openagent" method="post">
<table>

<thead>
<tr>

<td class="col0"></td>
<td class="col1">Last Modified</td>

</tr>
</thead>
<tbody>

<tr>
<td class="col0">

<input type="checkbox" name="docid" value="9A39152EC88316018525741D001F6B1B" />
</td>
<td class="col1">

03/31/2008 01:43:10 AM
</td>

</tr>

<tr>
<td class="col0">

<input type="checkbox" name="docid" value="E071C457345791238525741D001F6B1C" />
</td>

Document generated by Confluence on Apr 04, 2008 19:03 Page 311

<td class="col1">
03/31/2008 01:43:10 AM

</td>
</tr>

<tr>
<td class="col0">

<input type="checkbox" name="docid" value="F828447B4B47D9E18525741D001F6B1D" />
</td>
<td class="col1">

03/31/2008 01:43:10 AM
</td>

</tr>

<tr>
<td class="col0">

<input type="checkbox" name="docid" value="FFCC7DBBA636343A8525741D001F6B1E" />
</td>
<td class="col1">

03/31/2008 01:43:10 AM
</td>

</tr>

<tr>
<td class="col0">

<input type="checkbox" name="docid" value="72A9C554B76CD6208525741D001F6B1F" />
</td>
<td class="col1">

03/31/2008 01:43:10 AM
</td>

</tr>

<tr>
<td class="col0">

<input type="checkbox" name="docid" value="892A015FD3439C478525741D001F6B20" />
</td>
<td class="col1">

03/31/2008 01:43:10 AM
</td>

</tr>

</tbody>
</table>

<input type="submit" value="Update" />
</form>

</body>
</html>

We can now design our agent design element to update the submitted collection of Notes documents via
their document unique ID, which we can gather from iterating through the Document Context of the
Agent Session.

Domino Web application APIs

Since our Domino Web applications have been (presumably) architected with best practice security
considerations, the creation of Domino Web application APIs are simply an extension of current
architectures. Through the proper utilization of form design elements, view design elements, agent design
elements, and Domino URL commands, we can create custom APIs that both render and maintain data in
a Domino Web application.

Hybrid client application APIs

Our hybrid client applications have been (again, presumably) architected with best practice security
considerations. Therefore, the creation of Domino Web application APIs for solutions are simply an
evolution to a more industry recognized best practices of the separation of data from the rendering and

Document generated by Confluence on Apr 04, 2008 19:03 Page 312

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Security+considerations
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Security+considerations
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Form+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Agent+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Agent+design+elements
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/All+Domino+URLs

representational elements of the data.

While more advanced architectures and considerations may be required, a hybrid client application, by
definition, is design to accommodate multiple client types and therefore different client type
environments.

Lotus Notes client application APIs

Creating an API for a Lotus Notes client application delivered via the Domino HTTP Task when the
application is currently only Lotus Notes client-accessible allows for an immediate extension of the
application to Web browser and mobile client types. For best practices considerations, there are two
methods for the creation of a Lotus Notes client application API:

• The evolution of the application to a hybrid client application
• The creation of an application middleware/conduit engine architecture to facilitate such an API

When the evolution of a Lotus Notes client application to a hybrid client application is either not possible
or not necessary, we can implement an application middleware/conduit engine architecture. This type of
architecture can act as a communication bridge between the various browser clients and the source data
in our Lotus Notes client application. Additionally, this architecture can negate the need to modify the
security of your Lotus Notes Client Applications, because they will not be accessible through the browser
clients.

In the above figure, we can see the submission of requests for the query and maintenance of Domino
data through a middleware/conduit engine architecture. An additional benefit to this approach is the
ability to maintain and query data on several different Domino Databases and resources while
maintaining a single point of entry (via the middleware/conduit solution).

Document generated by Confluence on Apr 04, 2008 19:03 Page 313

Working with data

This page last changed on Apr 02, 2008 by jservais.

When you design with the Notes client, you tend to think in a form-based structure. You build views
where you have a document per row, and when you click it, that form opens. With Web development, you
no longer are restricted to this format. You can build views that take the user to different pages
depending upon what they click. You now can work with the Notes data without it being tied to the
structure.

In this section, we explore different ways to access information in the Notes databases. Hopefully you can
expand your thinking about what you can do with Notes and it will expand more with the future releases
of Notes. Explore JSON, play with Dojo, and see what you can do with federated data in query views.

• JSON
• RSS
• Using query views

Document generated by Confluence on Apr 04, 2008 19:03 Page 314

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/JSON
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/RSS
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+query+views

JSON

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Getting JSON from Domino views
• Getting JSON from Domino pages
• Getting JSON from Domino agents

Introduction

Domino has direct support for JSON in views with the &outputformat=JSON parameter. If you want to
send information or need additional controls on the information, then you must resort to development.
You can use an agent to return or accept JSON and you will have the full control that LotusScript or Java
agents provide. If you need the JSON in a different format, then you can use a page to render your JSON.

The JSON object is usually the result of an XMLHTTPRequest sent to a server. This is referred to as
Asynchronous JavaScript and XML (AJAX) even though you use JSON instead of XML. All of the popular
JavaScript libraries include support for creating the request and processing the resultant string. You pass
to the request function the URL that is used to access the server. For example, when getting all the
entries under "Riverbend" in a view you can use the following URL:

/database.nsf/viewname?readviewentries&outputformat=JSON&RestrictToCategory=riverbend

This returns a string that contains all the view entries with the category of "Riverbend" in the JSON
format.

Getting JSON from Domino views

By using the following Domino URL, the view entries in the JSON format will be returned. You can then
access any column or row in the view by accessing the JSON object.

/database.nsf/viewname?readviewentries&outputformat=JSON

Important

Remember to add &count=xx. Otherwise the number of entries defined in the view properties will
be returned. If you first call with &count=0, you can use the value that is returned by
@toplevelentries, which is the number of entries or categories in the view.

The following example shows a sample Domino view with categories in JSON.

Document generated by Confluence on Apr 04, 2008 19:03 Page 315

{ "@toplevelentries": "1",
"viewentry": [
{ "@position": "1",

"@noteid": "80000004",
"@children": "2",
"@descendants": "2",
"@siblings": "1",
"entrydata": [
{ "@columnnumber": "0",

"@name": "companyid",
"@category": "true",
"text": {"0": "003BE9"}

}]
},
{ "@position": "1.1",

"@unid": "6AFB146AABDED0568625741200540B96",
"@noteid": "3E2E2",
"@siblings": "2",
"entrydata": [
{ "@columnnumber": "1",

"@name": "Firstname",
"text": {"0": "Bruce"}

},
{ "@columnnumber": "2",

"@name": "$29",
"text": {"0": "<option value='006018'>Bruce</option>"}

}]
},
{ "@position": "1.2",

"@unid": "78053C46688490AD8625741200540B97",
"@noteid": "3E2E6",
"@siblings": "2",
"entrydata": [
{ "@columnnumber": "1",

"@name": "Firstname",
"text": {"0": "Melanie"}

},
{ "@columnnumber": "2",

"@name": "$29",
"text": {"0": "<option value='007673'>Melanie</option>"}

}]
}]

}

To visualize and to help validate your JSON object, you can use the JSON 2 HTML http://json.bloople.net/
Web page. You paste in your JSON object and it displays it graphically or tells you to fix it.

Document generated by Confluence on Apr 04, 2008 19:03 Page 316

http://json.bloople.net/

View of the JSON structure of a Domino view

Document generated by Confluence on Apr 04, 2008 19:03 Page 317

The JSON from the Domino view has objects and arrays that are defined. The following table lists the
objects and their descriptions.

Object name Description

toplevelentries The number of top level entries in the view, this
would be the number of categories in a
categoriezed view.

viewentry An array of the entries returned

@position The current entry's position in the view, similar to
@docnumber. Examples: 1,2,3.1,3.1.1

@noteid NoteID of the current entry

@unid UNID of the current entry

@children Number of children for the current entry

@descendants Number of descendantsfor the current entry

@siblings Number of siblingsfor the current entry

entrydata An array of the current entry's columns

@columnnumber Column number starting with 0

@name The name of the column from the properties box
under Programmatic Use.

@category Is the current entry a category

text The text returned in the column. If the column had
multiple values, each would be an additional
object in the text object.

Object names

The format of Object names returned by Domino views requires that you use the array notation to
access the data. Domino uses the at sign (@)to indicate object names in the view such as
@toplevelentries.

To get the number of entries or categories returned, you can use JavaScript to access the information.

The following example shows sample JavaScript:

var text = xhr.responseText;
var data=eval("(" + text + ")");
var top = parseInt(data["@toplevelentries"]);

Getting JSON from Domino pages

You can use a Domino Page to provide data in JSON (or any format. Build Domino pages with embedded
views (set to html), or computed text (with dblookup or dbcolumn), give it a name (data.json), and

Document generated by Confluence on Apr 04, 2008 19:03 Page 318

finally set the content type to application/json. With the computed-text objects, you can filter the data
needed with URL parameters and easily change the data.

This sample is used to pull values for a type-a-head field, where a list of entries is displayed that starts
with the characters that the user has typed in. The following sample is based on a category type-a-head
field where the user has entered "ad". The @dblookup uses the parameter passed in the URL to filter the
result set. You can also use an embedded query view, where the URL parameters are passed to the view
and used as part of the SQL query. See the Using query views section.

Page name: AutoSug.json
Content type: application/json
The URL : /db.nsf/autosug.json?open&input=ad

{ results: [
<Computed Value>
] }

The computed text field has the following formula:

ClassCache := "Notes" : "NoCache";
LookupDb := "";
View := "(entry)";
Key := @UrlQueryString("input");
Column := 1;
Temp := @DbLookup(ClassCache; LookupDb; View; Key; Column;[PartialMatch]);

@If(@IsError(Temp); "{id : \"1\", value:\"No Match\", info:\"\"}"; @Implode("{ id:
\""+@Unique(Temp);", "))

The following example shows the results:

{ results: [{ id: "Administration", value: "Administration", info: "all
Administrationentries"},

{ id: "AdminP", value: "AdminP", info: "all AdminPentries"},
{ id: "Admin", value: "Admin", info: "all Admin entries"}
]

}

Getting JSON from Domino agents

Using agents allows you to do more complex data manipulation such as combining information from more
than one database. You can use Java or LotusScript to build the agent. It does not have to reside in the
same database as the data. You can have a central database that provides all JSON data. On the
OpenNTF.org website, there are some libraries to read and write JSON data to help accelerate your
development. Remember that Domino development is all about collaboration.

The following example shows a sample agent that returns JSON (format like the view) of the first column
in a view. In this case, it's a category.

Sub Initialize
Dim session As New notessession

Document generated by Confluence on Apr 04, 2008 19:03 Page 319

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Using+query+views

Dim db As notesdatabase
Dim doc As notesdocument ' agent context
Dim View As NotesView ' search view
Dim vEntries As NotesViewEntryCollection
Dim vEntry As NotesViewEntry
Dim strCol As String
Dim json As String

Set db = session.currentdatabase
Set doc = session.DocumentContext

On Error Goto ErrorHandler

Print |Content-type: application/json|
Set view=db.GetView("vCat")
Set vEntries = view.allentries
If vEntries.Count = 0 Then ' NO DOCS FOUND ERROR

json = |{toplevel:[{"Status":"No Documents Found"}]}|
Print json
Goto TheEnd

End If
json = |{"@toplevelentries":"| & vEntries.Count & |","viewentry":[|
Set vEntry = vEntries.GetFirstEntry
While Not(vEntry Is Nothing)

strCol = vEntry.Columnvalues(0)
Set vEntry = vEntries.Getnextentry(vEntry)
If vEntry Is Nothing Then

json = json + |{"entrydata":[{"text":{"0":"|+ strcol + |"}}]}|
Else 'need the , at the end if not the last entry

json = json + |{"entrydata":[{"text":{"0":"|+ strcol + |"}}]},|
End If

Wend
json = json + |]}|

Print json
Goto TheEnd

ErrorHandler:
json = |{toplevel:[{"ERROR":Error$ & " Line#: " & Erl & | Object: | &

Lsi_info(2)}]}|
Print json

Resume TheEnd
TheEnd:
End Sub

Document generated by Confluence on Apr 04, 2008 19:03 Page 320

RSS

This page last changed on Apr 02, 2008 by jservais.

• Domino and RSS
• Domino RSS syndication
• RSS using views and view templates

Domino and RSS

Domino has always had the capacity to provide RSS feeds. There are to basic processes for getting RSS
from Notes documents:

• RSS using views and view templates
• Domino RSS Feed Generator database

The Domino RSS Feed Generator database is a quick way to get an RSS feed set up on an existing
database. Without customization, the application is simple and not very flexible after you get beyond the
basics. It has good support for <enclosure> tags and supports iCalendar or vCard objects. Immediately it
doesn't seen to feed HTML in descriptions, which is a popular way of getting adds and images into RSS
feeds. If you find a way to do this, updat this wiki with your solution. Otherwise you have to build your
own RSS view.

Domino RSS syndication

The following excerpt is from the Help About Using in the Domino RSS Feed Generator database. We
included it to give you some idea of the scope of this application.

The RSS Feed Generator database contains a collection of agents and script libraries designed to produce
RSS feeds for views in Domino databases, including:

• E-mail, Calendar, and Contact entries from a user's database
• Corporate contacts
• Discussions

RSS feed generator databases have three primary functions:

• Map fields in Domino databases to RSS XML elements
• Generate the RSS feeds
• Syndicate (advertise) feeds

The rss_generator.ntf is a server-based template, and it can only be used on a Domino server. Databases
created from the template must reside on the server, and they can only access and generate feeds for

Document generated by Confluence on Apr 04, 2008 19:03 Page 321

databases co-located on the same server.

Databases that are created from the template must include Anonymous in the access control list (ACL),
with Reader-level privileges, if the RSS feed database is to be used by anyone. Session authentication
must be disabled.

User-based RSS feed databases can be created with server security set to 'Basic' authentication mode
and Anonymous is set to 'No access.' When users open the database, the home page redirects users to
an "Available Feeds" page, which advertises all feeds listed in the RSS Feed Definitions view.

Views

Create and edit RSS feeds in the RSS Feed Definitions view. The order of the feeds in the view is the
order in which they appear in the feed list. You can change the order of the feeds in this view, by moving
them up or down the list.

Use the External Web documents view to collect and advertise Web-enabled documents as RSS items. For
example, you might use this view to aggregate important company documents sucha s Human Resources
PDF forms, corporate policies, and other documents that may not be part of a Domino view.

Setting up an RSS feed generator database

Create the database from the template, as described in Domino Administrator Help. In the RSS Field
Definitions view, click New Feed. The New RSS Feed Definition form is displayed. Choose the database
to serve up as an RSS feed.

Field Action

Database type Choose the type of database for which to create
the RSS feed:

• Derived mail database (calculated per user)
• Other, common database: The database type

determines some aspects of the behavior of
the feed. For example, if you create a feed
from a mail file, the user's name is displayed
as the feed name in the database.

Database Choose the database for which to create the feed.

View Choose the database view that will be used to
create the feed.

Next, configure the following mandatory fields for the RSS feed description. These map to required XML
tags in the RSS file.

Field Action

<title> Specify the title of the feed, which will appear on
the feed list in the database.

Document generated by Confluence on Apr 04, 2008 19:03 Page 322

<description> Provide a brief description of the feed. This also
appears on the feed list.

<language> The default is English.

<encoding> The default is UTF-8.

Finally, configure these optional fields to further refine the RSS feed description.

Field Action

Number of entries to be emitted Specify the number of items that appear in the
RSS feed.

Convert Domino names to RFC822 email
addresses

Have Domino-formatted user names (for example,
John Doe/West/Acme) be converted to standard
Internet e-mail addresses (for example,
johndoe@acme.com).

Add additional tag libraries Specify the location of other tag libraries you want
to use

Treat this view as an ordered list? If you specify this for an RSS feed, this means that
RSS readers will remove items that do not fit the
criteria of an ordered list. A common example of
an "ordered list" is a top-10 feed of best selling
books.
Note: Contacts and Calendar feeds should be
configured as ordered lists.

You can also add additional XML information at the bottom of the form to further define your RSS feed.
For example, for podcasts, you would use the <enclosure> tag to advertise an audio or video file.

The database also has an internal function to create iCalendar or vCard objects when the <enclosure>
tag is associated with an RSS item:

• iCalendar and vCard objects can be retrieved by examining the "URL" property of the <enclosure>
tag.

• Since most RSS readers do not process enclosure tags, sending a link to the iCalendar or vCard
object reduces the amount of unnecessary data delivered to the client.

You can configure global options for the RSS feed. Select the feed in the view and click Global Options.
From here, you can choose either of the following options:

• Change the look of the main page of the RSS generator database, including the header.
• Change the look of the redirect page, as well as the default redirect time.

Viewing and using the feed database

Then when Internet users first access the database, they are redirected to the feed list page. They click a
feed to add it to a feed reader or aggregator.

Document generated by Confluence on Apr 04, 2008 19:03 Page 323

RSS using views and view templates

By using a Notes view and a $$Viewtemplate, you can provide an RSS feed. RSS XML can be stored in
the document for performance, or it could be calculated in column formula if your RSS is evolving quickly.

Computed field "RSS" in the form or formula on view column (for documents in
the feed)

"<item>"+@NewLine
+"<title>"+Subject+"</title>"+@NewLine
+"<description>"+Description+"</description>"+@NewLine
+"<link>"+'link to document'+"</link>"+@NewLine
+"<guid>"+'link to document'+"</guid>"+@NewLine
+"</item>"+@NewLine

The RSS view

In the RSS view, set your view selection for the documents you want to publish.

• First column: Date Posted, @created, or @modified, sorted descending, hidden
• Second column: RSS (field) or column formula (above)

The Treat view content as HTML option

The RSS $$ViewTemplate

Create a form "$$ViewTemplate for RSS". In the form properties, complete the following actions:

1. Change the Character set to UTF-8

Document generated by Confluence on Apr 04, 2008 19:03 Page 324

2. Set the Content type to other: "application/rss+xml".
3. Test with "text/xml" because with "application/rss+xml" most browsers prompt to add the feed

rather than display the page.

The feed description

This information pertains to the feed not the entries. On "$$ViewTemplate for RSS", complete the
following actions:

1. Provide the RSS XML to identify the feed.
2. Use computed text or computed field to retrieve a description and so on.
3. Add a $$ViewBody field to get the RSS view entries.

<?xml version="1.0"?>
<rss version="2.0">
<channel>
[<computed text>]
[$$ViewBody]
</channel>
</rss>

In the computed text or computed field, enter the following information:

"<title>"+'lookup subject'+"</title>"+@NewLine

Document generated by Confluence on Apr 04, 2008 19:03 Page 325

+"<link>"+'link to database'+"</link>"+@NewLine
+"<description>"+'lookup description'+"</description>"+@NewLine

The result

The following example shows the result in valid XML:

<?xml version="1.0"?>
<rss version="2.0">
<channel>
<title>Document One</title>
<link>http://localhost/rss/documentone</link>
<description>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam fermentum
vestibulum est. Cras rhoncus.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Sed quis tortor. Donec non
ipsum. Mauris condimentum, odio nec porta tristique, ante neque malesuada massa, in dignissim
eros velit at tellus. Donec et
risus in ligula eleifend consectetuer. Donec volutpat eleifend augue. Integer gravida sodales
leo. Nunc vehicula neque ac
erat. Vivamus non nisl. Fusce ac magna. Suspendisse euismod libero eget mauris.</description>
<item>
<title>Document Two</title>
<link>http://localhost/rss/documenttwo</link>
<description>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam fermentum
vestibulum est. Cras rhoncus.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Sed quis tortor. Donec non
ipsum. Mauris condimentum, odio nec porta tristique, ante neque malesuada massa, in dignissim
eros velit at tellus. Donec et
risus in ligula eleifend consectetuer. Donec volutpat eleifend augue. Integer gravida sodales
leo. Nunc vehicula neque ac
erat. Vivamus non nisl. Fusce ac magna. Suspendisse euismod libero eget mauris.</description>
</item>
<item>
<title>Document Three</title>
<link>http://localhost/rss/documentthree</link>
<description>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam fermentum
vestibulum est. Cras rhoncus.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.
Sed quis tortor. Donec non
ipsum. Mauris condimentum, odio nec porta tristique, ante neque malesuada massa, in dignissim
eros velit at tellus. Donec et
risus in ligula eleifend consectetuer. Donec volutpat eleifend augue. Integer gravida sodales
leo. Nunc vehicula neque ac
erat. Vivamus non nisl. Fusce ac magna. Suspendisse euismod libero eget mauris.</description>
</item>
</channel>
</rss>

Remember to switch the content type of the $$ViewTemplate back to to "application/rss+xml" if you have
been testing it as "text/xml" and validate it by using a service like http://www.feedvalidator.org/ .

Document generated by Confluence on Apr 04, 2008 19:03 Page 326

http://www.feedvalidator.org/

Using query views

This page last changed on Apr 03, 2008 by jservais.

To use query views, the Domino server must be using DB2 as the back end and have the DB2 Access
server installed.

By using query views on the Web, you can access any data that is stored in the DB2 tables. By passing
information to the view, you can build dynamic search queries. You can use
@UrlQueryString("ParmName") to retrieve any parameter that is passed to the view. The queries can
return fields that are not limited to the ones that the developer created in the view. Unlike normal Notes
views that have the query and column values hard coded at design time, you can manipulate the query
and return fields. This means that you can build one view that lets you pull the customer information,
department information, or book descriptions. The only requirement is that a particular column can only
return one data type. If the column returns a text string, then it cannot return a number with a different
query, but it could if the number can be displayed as text.

Note
Query views are designed so that you can only build an SQL statement that produces a result set.
This is a security measure against inadvertent record deletion or change.

Gotchas

Currently the query views that are done show the view total for columns with total selected.
Domino Date fields that have the default time component may show the date off by one day in
the view.

Error messages are not very clear. If you get one, first check the fieldname in the SQL query.
Then check the DB2 table access. These are the biggest source of errors.

The Query views excel in response time for certain types of queries. If you want to show all 100,000
documents, then a Notes view is faster because the index is already built. However, if you want specific
documents, such as all documents created last quarter, then the Query view is significantly faster. Since
on the Web, you normally only show a few rows (30 to 50) at a time. In this case, Query views do help.

The following table shows timing results. It shows Notes views versus query views to retrieve documents
from a database with 100,000 documents and having a result set of about 1000 documents.

Selection Notes (indexed) Query view

Date < 1/1/2007 7 min 3 sec

Field = xxx 3 min 6 sec

range 28 min - first opened 3 sec

The Query view is also smaller since the view index is not stored. Remember that view options such as
sortable columns, categories, multiple columns sorted, calculations and extending the column, all cause

Document generated by Confluence on Apr 04, 2008 19:03 Page 327

the view to be slower regardless of the type. See the View design elements section for more information
about views.

When you create query views, in the Create View window (in the following figure), you must select By
SQL Query for Selection conditions. This is the only way to have a query view.

Create View window

Tip
When you create a query view, select By SQL Query last. When you select a view to copy the
design from, it overwrites the Selection conditions.

In Designer, the view has a different icon in front of it to indicate that it is a query view.

Document generated by Confluence on Apr 04, 2008 19:03 Page 328

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements

View list in Designer

Now when you open the view in Designer, you have an new object called SQL Query in the object list.
The following figure shows where you build your query.

Query view in Designer

The tables that you normally access are created from DB2 Access Views. The DB2 Access Views table

Document generated by Confluence on Apr 04, 2008 19:03 Page 329

name is created by the server by using the database name that DB2 Access Views is in, along with the
DB2 Access Views name. For example, the table CRM_SUP8.TICKETDAV_T is from the crm_support.nsf
file where the DB2 Access View named TicketDAV resides. The server takes the first seven characters of
the file name, adds a number, and then the DB2 Access Views name. The table with the _T at the end is
the data, and the table with _X is the index.

You can also access multiple tables and display the information in the same view. You are not limited to
just data from DB2 Access Views. You can access data in any DB2 table. You can have a view that shows
information that is combined from other databases. Using @dblookup is faster with the view in the
current database than accessing another database. Therefore, put a query view in the current database
to provide the information that is needed. You can also filter it so that only the information that is needed
for the database is in the view, making it smaller and faster.

Important
The table name is not guaranteed to be the same if you use a template on a new server. Also you
must click the Create and Populate buttons manually to access the table that is created from
the DB2 Access View.

The following code allows a DB2 Query View to be composed dynamically, by passing the Department
information as part of the URL.

URLParam := @UrlQueryString("Dept");
Clause := @If(URLParam ="" ; "" ; " AND DeptName='"+URLParam+"'");

"SELECT D.DeptID , D.DeptName As DeptName , E.DeptID , E.Lastname AS Lastname FROM " +
T1 +" AS D, " + T2 + " AS E WHERE D.DeptID=E.DeptID" + Clause

You can get quite complex. The following code example lets a Web user search for support tickets by
ticket number, company name, status, or assigned name and have the results displayed in the view
categorized by which ever field they want. You can now use one view instead of multiple views. The
following example shows the sample SQL query:

CatField := @UrlQueryString("cat");
status := @UrlQueryString("stat");
ticket := @UrlQueryString("tkt");
user := @ReplaceSubstring(@UrlQueryString("user");"_";" ");
cmpy := @LowerCase(@ReplaceSubstring(@UrlQueryString("cmp");"_";" "));

company := @If(cmpy="";""; " AND LCASE(COMPANYNAME) LIKE '%" + cmpy + "%' ");
ufilter := @If(user="";""; " AND ASSIGNMENT LIKE '%" + user + "%' ");
filters := "Where STATUS_DESC='" + Status + "' " + company + ufilter;

stat := @If(ticket !=""; "Where TICKETID LIKE '%"+ticket+"%' "; filters);
cat := @If(CatField ="";" STATUS_DESC ";CatField)+ " as db2Cat, ";
"SELECT " + cat + " #NOTEID, #UNID, COMPANYNAME, CONTACTNAME, DESCRIPTION, MODIFIED_DATE,
ASSIGNMENT, STATUS_DESC, TICKETID" +
" FROM CRM_SUP8.TICKETDAV_T " + stat

The first column is categorized and uses the following column formula:

@If(db2cat ="";"* Not categorized";@Name([CN];db2cat));

With this example, the categorized column will be the fieldname that is passed as the &cat parameter in
the URL. Therefore, you can have it categorized by contact, status, company, or by any field in the table.

Document generated by Confluence on Apr 04, 2008 19:03 Page 330

Filtering is similar. You can show only open tickets, tickets for a selected company, or tickets for one
engineer, and only one view is needed. If you add some Javascript and JSON, you then have an
interactive page that provides a dynamic list of tickets.

Document generated by Confluence on Apr 04, 2008 19:03 Page 331

5.0 Extending rich client applications for Web clients

This page last changed on Apr 03, 2008 by jservais.

Web-enabling a Domino Database

If you are lucky, you will be given detailed, well architected requirements when designing a new Domino
application. If the application is intended to be accessed by both a Lotus Notes client and Web browsers,
you will have the luxury of designing for this dual-use up front. However, more often you will be asked to
Web-enable an existing Lotus Notes application and make it functional on the Web.

There are some benefits to extending a Lotus Notes application to the Web, as well as some potential
pitfalls. However, if you carefully define the requirements for browser access of the application and are
aware of the different ways Notes clients and Web browsers handle data, you can avoid the pitfalls and
take advantage of the benefits.

Topics in this section

• Benefits and pitfalls of extending rich client applications for Web clients
• Data management in hybrid rich and Web client applications
• Defining functional requirements based on client type
• Developing hybrid rich client and Web client applications

Document generated by Confluence on Apr 04, 2008 19:03 Page 332

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Benefits+and+pitfalls+of+extending+rich+client+applications+for+Web+clients
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Data+management+in+hybrid+rich+and+Web+client+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Defining+functional+requirements+based+on+client+type
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Developing+hybrid+rich+client+and+Web+client+applications

Benefits and pitfalls of extending rich client applications for Web clients

This page last changed on Apr 03, 2008 by dalandon.

• Introduction
• Benefits
• Pitfalls

Introduction

Frequently, you are asked to take an existing Lotus Notes application and Web enable it so that users can
access the application with a browser in addition to a Lotus Notes client. There are both benefits and
pitfalls to having an existing rich client application as a starting point rather than having to create a Web
application from scratch.

Benefits

The chief benefit of taking an existing application to the Web is that the application functionality should
already be defined. The business logic and workflow are typically already in place and familiar to users.
There may even be a requirements document or functional and technical specifications documents for the
application. Consequently, you can focus on the Web design and development, and not be distracted by
other tasks.

Another benefit of Web enabling a Lotus Notes application is that when creating the browser interface,
you are not limited by the rich client UI. Most Lotus Notes applications have a consistent navigation
scheme created with a frameset that contains an outline in the frame on the left and the selected content
displayed in a frame on the right. Certainly, there is nothing wrong with this consistency among Notes
applications, and it can be a benefit to users when they first work with a new database.

Document generated by Confluence on Apr 04, 2008 19:03 Page 333

Typical Lotus Notes application UI with navigation on the left

However, when designing for the Web, you have more flexibility in laying out the UI of an application.
There may be a compelling reason for the look and feel of the Web interface of a Lotus Notes application
to differ from its look and feel in a rich client. For example, the Web interface may become part of the
client's intranet where the client already has a defined navigation scheme and uses a color palette that's
different from the one that is used in the Lotus Notes application.

Document generated by Confluence on Apr 04, 2008 19:03 Page 334

Example Web application UI with navigation on the top

Another benefit of extending a Lotus Notes database to the Web is that Domino automatically attempts to
render the existing rich client UI in HTML. You undoubtedly should customize it to enhance the
appearance of the application on the Web, but Domino does much of the initial work for you. Having a
base markup to work with is often easier than beginning with a blank slate.

Default HTML generated by Domino with minimal customization

Pitfalls

One potential pitfall to avoid when extending a rich client application to the Web is assuming that,
because the rich client application already exists, most of the development for Web clients is already
done. For example, it is common in Lotus Notes client applications for form validation to be done by using
LotusScript in the Querysave event of the form. The following example shows a simple script that ensures
a value is entered in the Subject field:

Sub Querysave(Source As Notesuidocument, Continue As Variant)
If Trim(Source.FieldGetText("Subject")) = "" Then

Messagebox "You must enter a subject.", 16, "Validation Failure"
Continue = False

End If
End Sub

However, this code does not execute in a browser and must be rewritten by using client-side JavaScript,
and for any data where validation is critical, a server-side agent is required. With the exception of agents,
you can assume that any LotusScript in the application must be rewritten in JavaScript.

In addition, there are a number of @functions that do not work on the Web such as those that generate

Document generated by Confluence on Apr 04, 2008 19:03 Page 335

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Developing+hybrid+rich+client+and+Web+client+applications#DevelopinghybridrichclientandWebclientapplications-ReconsiderSecurity

modal dialog boxes in the Notes client:

• @DialogBox
• @PickList
• @Prompt

You can determine exactly which rich client functionality must be reprogrammed for the Web by carefully
testing the required functionality in a browser.

Another pitfall to avoid is assuming that you need to duplicate exactly all of the rich client functionality on
the Web. This is often not the case, and you can avoid unnecessary work by carefully defining the
functional requirements for browser clients.

In addition, another pitfall of dual-use applications is that rich clients and Web clients handle data
differently. If you do not account for these differences, unintended consequences may result.

Document generated by Confluence on Apr 04, 2008 19:03 Page 336

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Developing+hybrid+rich+client+and+Web+client+applications#DevelopinghybridrichclientandWebclientapplications-ScopetheDevelopmentEffort
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Developing+hybrid+rich+client+and+Web+client+applications#DevelopinghybridrichclientandWebclientapplications-ScopetheDevelopmentEffort
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Defining+functional+requirements+based+on+client+type
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Defining+functional+requirements+based+on+client+type
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Data+management+in+hybrid+rich+and+Web+client+applications
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Data+management+in+hybrid+rich+and+Web+client+applications

Data management in hybrid rich and Web client applications

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Managing the data types
• The issue with rich text
• Handling attachments

Introduction

One benefit of a hybrid Lotus Notes and Web application is that both interfaces access the same data
store. The documents that you create in Lotus Notes are visible to Web browsers and vice versa.
However, Lotus Notes has 17 field types, and data that is submitted from the Web is, for practical
purposes, just text. Consequently, there are data management considerations for hybrid applications that
help avoid unexpected issues.

Managing the data types

Because data submitted from the Web is text, numeric and date-time data types in a hybrid application
require special consideration.

• Numbers
• Dates

Numbers

A number field on a Lotus Notes form only accepts numeric data. A Notes user can enter non-numeric
data in a number field but when the user attempts to save the document, the Notes client shows the
error message shown in the following figure.

Attempting to submit non-numeric
data in a number field using Notes

Likewise, if a form submitted from the Web contains non-numeric data in a number field, Domino
generate a similar error message as shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 337

Attempting to submit non-numeric data in a number field using a browser

It appears that there is no problem. Domino prevents users from submitting non-numeric data where a
hybrid application requires a number. While this is true, it takes a round trip from the browser to the
server for Domino to test the field value and inform the user of the error. We can make the application
more user friendly and save bandwidth by testing to see if the field value is numeric using client-side
JavaScript.

JavaScript contains a special value, NaN, which is short for "not a number." We can use NaN to write a
function to verify a field value is numeric by using the isNaN() and parseInt() functions as shown in the
following example:

function isNumeric(input) {
// parseInt() and the parseFloat() attempt to return an integer or a decimal respectively
var x = parseInt(input, 10);
if(isNaN(x)) {

alert('"' + input + '" cannot be converted to a number');
isNumeric = false;
return isNumeric;

}
}

The isNumeric() function can be placed in the jsHeader of a form or an externally referenced JavaScript
library and called from the onSubmit event or within a larger form validation function by using syntax
similar to the following example:

var f = document.forms[0];
if(!(isNumeric(f.NumberField.value))) {

f.NumberField.focus();
return false;

}

Each call to isNumeric() takes as a parameter the value of the field we want to ensure contains a numeric
value. If the field does not contain a number, the user is alerted, focus returns to the field, and execution
of the form validation function ceases.

Dates

Like number fields, a Date/Time field in Notes requires a valid date/time value or the Notes client shows
the error message shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 338

Attempting to submit an invalid
date/time value in Lotus Notes

Domino shows a similar error message (see the following figure) if an invalid date/time value is
submitted from the Web.

Attempting to submit an invalid date/time value using a browser

However, just as with number fields on the Web, allowing Domino to validate a date/time value requires
a round trip to the server, wasting time and bandwidth when the field can first be checked at the client.
Unlike a number field, validating a date/time value on the Web is somewhat complex.

When attempting to determine whether a given date value is valid, you must account for several factors
such as the following examples:

• Different months have differing numbers of days, and in the case of February, a different number of
days depending on the year.

• Users in different countries may enter a date in month/day/year format or day/month/year.
• There are at least three commonly used separators in date values, a forward slash (/), a hyphen (

-), or a period (.)

Because of these issues, you sometimes see date values in Web applications that are created by using
three separate selection lists rather than a text input field in order to minimize the amount of validation
work required as shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 339

Creating a date on the Web by using three separate fields

The selected values are then combined to create a date/time value in a hidden, computed field. However,
this approach still requires client-side JavaScript to ensure the selected date is valid (and not something
like February 31, 2008) to avoid an unnecessary round trip to the server.

As another option, the ever increasing number of JavaScript frameworks now make it a simple exercise to
add a DHTML "date picker" to a Web page, similar to the one that can be displayed in the Notes client as
shown in the following figure.

A DHTML date picker

The best approach for implementing time/date fields in your Domino application varies based on your
audience and the application requirements. The associated code can be rather lengthy due to the multiple
considerations involved in validating time/date fields. However, the following links point to several
examples of browser based time/date field implementations and JavaScript validation routines. A search
for relevant keywords using the search engine of your choice will undoubtedly yield additional examples:

• http://www.nsftools.com/tips/NotesTips.htm#datepicker
• http://www-10.lotus.com/ldd/sandbox.nsf/Search?SearchView&Query=date%20picker&SearchOrder=0&Start=1&Count=100
• http://www.expertsrt.com/scripts/Rod/validate_date.php

Document generated by Confluence on Apr 04, 2008 19:03 Page 340

http://www.nsftools.com/tips/NotesTips.htm#datepicker
http://www-10.lotus.com/ldd/sandbox.nsf/Search?SearchView&Query=date%20picker&SearchOrder=0&Start=1&Count=100
http://www.expertsrt.com/scripts/Rod/validate_date.php

The issue with rich text

If you have a hybrid application that uses rich text fields, you must be aware of a couple of issues. First,
if you create a rich text field on a Notes form, the default option for rendering the field on the Web is
"Using HTML" as shown in the following figure.

Default option for rendering a rich text field on the Web is "Using HTML"

On the Web, this translates to a text area and users are limited to entering simple text as shown in the
following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 341

A rich text field displayed as HTML

Because a text area limits input to simple text, displaying a rich text field on the Web by using HTML is
probably the worst choice for hybrid applications where documents that contain rich text fields will be
edited by both Notes clients and Web browsers.

Attention
If a user edits a document in Lotus Notes and enters formatted text in a rich text field that is
configured to display on the web using HTML, and the document is subsequently edited on the
Web, all the rich text formatting is removed.

The second option for displaying a rich text field on the Web is "Using Java Applet." Unlike a text area,
with this option, users can enter formatted text from the Web. Better still, if a document has been edited
in Lotus Notes and formatting is applied to a rich text field, Domino largely preserves the formatting
when the document is edited on the Web. Note that 100% fidelity is not maintained when editing a rich
text field in both Notes and on the Web, but it is close.

Document generated by Confluence on Apr 04, 2008 19:03 Page 342

A rich text field displayed using a Java applet

The third option for displaying a rich text field on the Web is "Using Best fit for OS." This option uses an
ActiveX® control to display the rich text field, but only in Internet Explorer. Users of other browsers still
see the Java applet.

Document generated by Confluence on Apr 04, 2008 19:03 Page 343

A rich text field displayed in Internet Explorer "Using Best Fit for OS"

If the browser users of your application use a mixture of Internet Explorer and other browsers, you may
want to avoid the "Using Best Fit for OS" option so that users have a consistent interface when working
with rich text.

Developers have successfully incorporated other WYSIWYG text editors for the Web, such as FCKeditor
and TinyMCE, into Domino Web applications. However these implementations are almost exclusively for
browser access only. Consequently, if your hybrid application requires both Notes client and browser
users to edit documents that contain rich text fields, the best option in Domino 8.0.1 and earlier is to
display rich text fields on the Web by using a Java applet. Ensure that the users of your application
understand that there are limitations when editing rich text using a browser and that they should avoid
adding certain objects to rich text fields by using a Notes client such as:

• Tables
• Images
• Ordered lists

Handling attachments

The final issue related to data management you want to consider when developing a hybrid application is

Document generated by Confluence on Apr 04, 2008 19:03 Page 344

http://www.fckeditor.net
http://tinymce.moxiecode.com

whether users can add attachments to documents. Using a Notes client, a user can create an attachment
in any rich text field. If the document is subsequently viewed by using Lotus Notes or a Web browser, the
icon for the attachment is visible in rich text field the attachment was saved in as shown in the following
figure.

An attachment saved in a rich text field

The Web access display settings for the rich text field determine what happens to attachments when a
document is edited on the Web however. If the rich text field is set to display "Using a Java Applet," any
attachments that are already part of the document or added from the Web are saved to the rich text
field, although the formatting of the attachment icon changes.

Document generated by Confluence on Apr 04, 2008 19:03 Page 345

Saving the document on the Web modifies the display of the attachment

If the rich text field is set to display as HTML, the attachment is saved to the document outside of the rich
text field as shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 346

An attachment saved as part of the document but not in a rich text field

Consequently, when dealing with attachments in hybrid applications, it is best to have at least one rich
text field set to display as a Java applet on the Web.

Important
If you have more than one rich text field on a form that is set to display on the Web as a Java
applet, be aware that any attachments on the form, whether they were added by using Lotus
Notes or a Web browser, and whether they are attached in the first rich text field on the form or
subsequent rich text fields, are all saved to the first rich text field when the document is saved
from the Web.

Document generated by Confluence on Apr 04, 2008 19:03 Page 347

Defining functional requirements based on client type

This page last changed on Apr 03, 2008 by dalandon.

• Introduction
• Not all clients are created equal
• Functional requirements for Web access

Introduction

If you have been asked to Web enable an existing Lotus Notes application, begin by defining the
functional requirements for browser access of the application.

Not all clients are created equal

One of the reasons for the term "rich clients" is because they have a rich set of functionality. This is
particularly true of Lotus Notes. In contrast, Web browsers have been historically referred to as "thin
clients" and have lacked the feature set of client-server applications.

Web technologies have advanced. There are now a number of frameworks that enable the development
of rich Web applications. However, it is still not possible to exactly duplicate all the functionality of a
Lotus Notes client application in a Web browser. Consequently, when Web enabling a Notes database, it is
important to determine what functionality is required on the Web and how it can be implemented.

Functional requirements for Web access

Most Web-enabled Lotus Notes applications do not have the same set of features that are available to
both Notes clients and Web browsers. For example, the Lotus Notes interface of a help desk application
may allow members of the help desk to create and update trouble tickets. By contrast, the browser
interface to the same application may only enable authenticated users to view the status of tickets
created for their individual issues.

Before you begin Web enabling an existing Lotus Notes application, you must answer the following
questions:

• Will the users who currently access the application in Notes be the same users who access the
application on the Web?

• Will the users who access the application with a browser require the same functionality that is
available with a Notes client?

• How will users access the application on the Web? That is, will it be part of the corporate intranet or
Web site or will it be a stand-alone application?

Document generated by Confluence on Apr 04, 2008 19:03 Page 348

The answers to these questions will help you define the functional requirements for the browser interface
and assist you in creating use cases for design and testing.

Document generated by Confluence on Apr 04, 2008 19:03 Page 349

Developing hybrid rich client and Web client applications

This page last changed on Apr 03, 2008 by jservais.

When developing a hybrid Lotus Notes and web application, there are several best practices to keep in
mind:

• Scope the development effort
• Design for ease of maintenance
• Reconsider security

Important
Before you begin development on the browser interface for a rich client application, ensure that
the functional requirements for browser clients have been defined in order to avoid unnecessary
work.

Scope the development effort

After you define the functional requirements for the browser interface, begin development by attempting
to perform the required functionality in the browser or browsers with which you expect users to access
the application. Move through the application step-by-step and document those items that do not work or
functionality that is missing. This process helps you to create a realistic level of effort for Web enabling
the application.

Having an accurate level of effort is important before undertaking any development project, but is
particularly important for Web-enabling an existing Domino application. Clients often feel that creating a
Domino Web application is a quick project and Web enabling an existing application is even faster. While
Domino provides for rapid Web application development, the complexity of an existing Domino application
is generally directly proportional to the amount of time it takes to create a browser interface for it.

Test and consider the following items:

• Application access
• User interface
• Viewing the application data
• Adding or editing the application data

Application access

By necessity, the first item to test for is application access:

• Are you prompted to authenticate when you access the application in a browser?
• If not, should you be?
• Is the data in the application sensitive?

Document generated by Confluence on Apr 04, 2008 19:03 Page 350

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Defining+functional+requirements+based+on+client+type

• If so, does it require Secure Sockets Layer (SSL)?

As a developer, you may need to work with your Domino administrator to address authentication with the
server and enable SSL for the application. You can find an overview of these topics in 6.0 Server
configuration and SSL support.

User interface

After application access, you must examine the user interface and ask the following questions:

• Does the existing application navigation as rendered by Domino work in a browser?
• If the application will be part of an intranet or a component of an existing site, is the navigation

consistent with the rest of the site?
• Do the application graphics and color palette match the rest of the intranet or existing Web site?

As part of the user interface, also consider links that were not required in the Notes application but are
needed on the Web to help users to navigate such as a link to the corporate home page or intranet splash
page. Additionally, most Web sites contain an "About" page, a legal disclaimer, and a contact page.
Check if these pages already exist to determine whether you need to create them.

Viewing the application data

Separate from the user interface, test the views that are required to support browser access of the
application by asking the following questions:

• Do the views display as expected?
• Can users easily navigate the view, for example, move forward and backward?
• Are there links in the view to open the documents?
• Are the required view actions available and do they work on the Web?

As a result of testing the views, you might find that you want to create $$ViewTemplate forms in the
level of effort for Web enabling the application.

Adding or editing the application data

The next step in testing your application is to look at each form in a browser in both read and edit mode
and examine is the overall appearance. Ask the following questions:

• Do field labels line up with the corresponding fields?
• Are the fonts on the form an appropriate size and color?
• Do the graphics render correctly?

After you examine the form's appearance, test for required functionality by asking the following
questions:

• Are the required form actions available and do they work on the Web?
• Is there a way for the user to submit the form?

Document generated by Confluence on Apr 04, 2008 19:03 Page 351

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/6.0+Server+configuration
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/6.0+Server+configuration
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SSL+support
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/View+design+elements

• Does the form validation work as you expected?

Remember that any client-side LotusScript functionality must be rewritten in JavaScript, as do @formulas
that generate modal dialog boxes in the Notes client such as:

• @DialogBox
• @PickList
• @Prompt

There is a broader list of @formulas that do not work on the Web, or are restricted, in the "@Functions on
the Web" document in the "Programming Domino for Web Applications" section of the Domino Designer
Help database.

Finally, review form actions and events, such as PostOpen and QuerySave for LotusScript or @formulas
that are not supported on the Web.

Design for ease of maintenance

After you begin the work of creating a Web interface for a Lotus Notes application, always design with
future application maintenance in mind. Specifically, avoid having two completely different sets of design
elements in the application, one to support web clients and one to support Notes clients. There are
almost always some forms and views duplicated for each client type. However, every time this occurs, it
doubles the amount of work that you have to do when the design of the application changes.

A simple example is the addition of a field to a form. If there is a Web version of the form and a Notes
version, the field must be added to two forms instead of just one. If the field data needs to be displayed
in a view and there are two versions of the view instead of one, then two additional changes must be
made.

Reconsider security

Typically, in a Lotus Notes application, validation of data submitted via a form is done at the client by
using @formulas, LotusScript, JavaScript, or all three. If a required field is missing a value or a field fails
a validation test, the user is alerted and no data is submitted to the server until the issue is corrected.
Many developers duplicate this same functionality on the Web by using client-side JavaScript. However,
unlike Lotus Notes, it is trivial for a browser user to intercept form data after client-side validation and
modify it before it is sent to the server.

If your Domino Web application is important and its functionality relies on data submitted by your users,
validation should be done twice. For the convenience of your users, you should still do initial form
validation using client-side JavaScript. This save needless round trips to the server if the user does not
complete required fields or enters data in the incorrect format. However, a second validation of user
submitted data should be done on the Domino server via a WebQuerySave agent triggered by submission
of the form. This ensures that the data validated on the client is the same data that reaches the server.

Document generated by Confluence on Apr 04, 2008 19:03 Page 352

http://www-128.ibm.com/developerworks/lotus/documentation/dominodesigner
http://www-128.ibm.com/developerworks/lotus/documentation/dominodesigner

See Server side user input validation in 4.0 Building Domino Web applications, for a detailed example of
using a WebQuerySave agent for form validation.

Document generated by Confluence on Apr 04, 2008 19:03 Page 353

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Input+validation+-+Server+side
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/4.0+Building+Domino+Web+applications

6.0 Server configuration

This page last changed on Apr 03, 2008 by jservais.

• Tell HTTP commands
• Notes.ini settings for HTTP
• Topics in this section

Domino provides the ability to present information to users through a Notes client and Web browser. To
enable the server to present Web pages, the HTTP task must be enabled. You can enable the HTTP task
through the console, or to have it run whenever the server is started, add it to the ServerTasks line in the
Notes.ini.

The Web server part of the Domino server provides for additional functionality and additional
configuration settings and security concerns.

Tell HTTP commands

Command Result

Tell HTTP Dump Config Dumps the HTTP configuration to a text file so that
you can see how the server is configured.

Tell HTTP Refresh Refreshes the Web server before the normal
refresh. You can specify the refresh cycle interval
in the server document.
During a Web server refresh cycle, all of the Web
site documents, including File protection,
authentication realms, and rules, are reloaded by
the server.

Tell HTTP Restart Refreshes the Web server with changes made to
settings in the:

• Server document for the Web server
• File protection, virtual server, and URL

mapping documents in the Domino Directory
• NOTES.INI file that affects the HTTP server

task
• HTTPD.CNF and BROWSER.CNF files
• Servlets or the servlets.properties fileThis

command produces mostly the same results
as stopping and restarting the Web server
but is faster since the HTTP server task
remains in memory. All outstanding HTTP
requests are processed before the HTTP task
restarts. However no HTTP requests are
processed during the restart. This command
deletes the in-memory page and

Document generated by Confluence on Apr 04, 2008 19:03 Page 354

user-authentication caches.

Tell HTTP Show File Access Displays information about file system protection
on the machine and on virtual servers, if you set
up virtual servers on the machine.

Tell HTTP Show Security Displays information about SSL and the server key
ring file, including information about whether the
server started SSL on the machine. Displays
information about SSL for virtual servers if you set
up virtual servers on the machine.

Tell HTTP Show Users Displays the names of users, IP addresses, and
the session expiration time for users authenticated
with session-based authentication. On servers that
are using multiple servers (SSO), authentication
may not report sessions accurately by using this
command. If the authentication cookie is from the
current server, it displays the user name, IP
address, and session expiration time for that
server. If the authentication cookie is not from the
current server, then is does not display session
information for users. After a user logs out, this
command continues to display the cookie as valid
on the server. The session is still valid even
though the user has ended the session.

Tell HTTP Show Virtual servers display a list of virtual servers
running on the machine.

Tell HTTP Quit Stops the Web server task.

Restart Task HTTP This is a general command and is shorthand for
issuing a "tell http quit" followed by a "load http."

Notes.ini settings for HTTP

This following table provides a brief list of the notes.ini settings that effect the HTTP task on the Domino
server. We recommend that you research the setting prior to implementing it and make sure it will not
cause performance issues. The Domino resources section contains a list of sites hosting information about
the Notes.ini setting for you to reference. These settings can be made to the Notes.ini directly or through
the server's configuration document. The configuration document lets you easily see what is set, without
having to access the Notes.ini directly.

Subject Release Description

DominoCompleteDocType 7 Use to have the Domino Web
server generate a specific
doctype string in the generated
HTML. It does not cause the
server to generate the correct
html for each type.

DominoNoWebAdmin Specifies whether the HTTP

Document generated by Confluence on Apr 04, 2008 19:03 Page 355

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+resources

server task automatically creates
and manages the Domino Web
administrator (webadmin.nsf)
application.

DominoStrictHTML 7 DominoStrictHTML=2 No
additional information is known
about this variable.

DominoDisableFileUploadChecks Allows the file upload control to
be disabled on pages served by
the Domino Web server.

DominoXUrlProcess 7.0 To enable a Domino Web
server's URL command parser to
accept ! or ? in the URL. Put into
the workstation notes.ini to test
pages using the exclamation
mark (!) with the Domino
Designer. For servers, on the
Web site document or server
document, if "Using Internet
Site" is not enabled. It is listed
as "Make this site accessible to
web search site crawlers."

HTTPDisableGlobalWebsiteRules 8.0.1 To have the default Web site not
be applied to all Web sites when
using Internet sites, set the
variable
"HTTPDisableGlobalWebsiteRules=1".

HTTPDisableSSIWarnings 7.0.2 Use to allow server-side include
(SSI) files to include comments
containing "<!--#" without
warning to the console and
browser.

HTTPDisableUrlCache Set to "1" to disable the server
side cache which was introduced
to minimize redundant gzip
compressions.

HTTPEnableConnectorHeaders 6.0 Enables the Domino HTTP task to
process special headers that are
added to requests by a
WebSphere 4.0.3 plug-in
installed on a foreign Web
server. Valid Values are: 0

HTTPEnablePostDataLogging 6 HTTP request logging should be
used only for troubleshooting

HTTPEnableResponseContentLogging6 HTTP request logging should be
used only for troubleshooting

HTTPEnableThreadDebug 6. HTTP request logging should be
used only for troubleshooting.

Document generated by Confluence on Apr 04, 2008 19:03 Page 356

HTTPFormulaCache Enables (1) or Disables (0)
the HTTP server formula cache

HTTPLogFormatAscii HTTP log files are written in
EBCDIC format by default on the
i5/OS® platform. You can
change the format of these files
to ASCII by setting the following
in the NOTES.INI file.

HTTPLogUnauthorized 6.0 When set to 1, the Web server
logs Error 401 instances to the
server console. These instances
are generated in two cases:

• A user attempts to access a
resource but is not
authorized for it.

• A user has failed to
authenticate.

HTTPMultiErrorPage 6 The original R5.x model or R6.x
queue of requests model can be
selected. This variable is for
Notes 6.5.4 FP1 and later.

HTTPSkipTranslationOfNsfRequests 7.0.2 Remove NSF files from Web rules
to allow backward compatibility
with R5. The Notes.ini variable is
"HTTPSkipTranslationOfNsfRequests=1".

HTTPUseNotesMemory Setting this variable to 1 can
prevent a excessive use of the
general Memory pool. This
excessive usually causes a
"Panic: Insufficient Memory"
error message.

HTTP_Port This variable is only used during
the collaboration server install.
Example : HTTP_Port=8088

HTTP_Pwd_Change_Cache_Hours 6.0 Allows both the old and new
passwords to be valid on a
server after user request an
HTTP password change for this
number of hours.

SSLCipherSpec Determines which SSL-compliant
cipher to use to encrypt files on
the server.

SSL_Load_Client_Cert 5 Enables LDAP lookups to be done
properly when SSL is being used.

SSL_Resumable_Sessions Specifies the number of
resumable SSL sessions that will
be cached on the server. Setting

Document generated by Confluence on Apr 04, 2008 19:03 Page 357

this variable to 1 disables SSL
session resumption on the
server.

ReportSSLHandshakeErrors 5 Reports HTTP SSL handshake
errors to the console and
LOG.NSF. You may want to set
this by default, since it only
reports errors.

WebAuth_Verbose_Trace Use this setting to troubleshoot
problems with Web server user
authentication and Web server
group searches for database
access verification. With the
setting enabled, a Domino Web
server records detailed
information about specific Web
user authentication sessions at
the server console.

WebSess_Verbose_Trace When enabled, the setting allows
a Domino Web server to record,
at the server console, detailed
information about specific Web
session-based authentication
sessions, such as unauthorized,
unauthenticated, or session
expiration information.

Topics in this section

• Logging
• Performance considerations
• Security considerations
• Server error handling
• Topology
• Working with Web site rules

Document generated by Confluence on Apr 04, 2008 19:03 Page 358

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Logging
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Performance+considerations
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Security+considerations
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Server+error+handling
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Topology
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+Web+site+rules

Logging

This page last changed on Apr 03, 2008 by dalandon.

• Introduction
• Using the Domino server's access logs
• Using the Domlog database
• Common log settings
• Custom logging

Introduction

The Domino server has the ability to log information in several ways. One method uses a Domino
database to store information about requests serviced by the server, while another method uses standard
text files to store similar information. Alternatively, applications can log access information on their own
with various methods.

We recommend that you use one of the server's methods for logging, because it simplifies your
application's duties and leverages the built-in functionality of the Domino server.

Using the Domino server's access logs

The Domino HTTP task can log request information to text logs in a standard format. To enable the
Domino access logs, click the Internet Protocols -> HTTP tab of the server document. Then enable the
logs as shown in the following figure. You use this setting in the same place regardless of whether you
are using Internet Site documents on the server.

There are other settings in the server document that control where these logs exist and the format of
each entry as shown in the following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 359

You can set the Access log format field to either Common or Extended Common. The difference between
the two is that the Common format splits up log information among different text files: access, agent,
and referer. The Extended Common format logs all of the access, agent, and referer information in one
line in the access log files, so that the agent and referer logs are not created. If the Common format is
used, then each request to the server corresponds with one line in each of the access, agent, and referer
logs, which can be quite difficult to correlate correctly.

The Directory for log files field is located under the data directory unless a full explicit path is specified.
The Access log field contain entries for each request made to the Domino HTTP server. The Agent log field
contains entries that detail the HTTP client for each request, be it Java, Firefox, Internet Explorer, Opera,
and so on. The Referer log field contains information about links that generated other requests that
reached the Domino HTTP server.

The following table defines what is placed in the log files.

Text file Records

Access Depending on the file format you choose, the
Access log file records the following Web server
request information in the order shown:

• Common
1. Client DNS name or IP address if DNS

name is not available
2. Host header from request, or server IP

address if the Host header is not
available

3. Remote user if available
4. Request time stamp

Document generated by Confluence on Apr 04, 2008 19:03 Page 360

5. HTTP request line
6. HTTP response status code

• Extended Common
1. Client DNS name or IP address if DNS

name is not available
2. Host header from request, or server IP

address if Host header is not available
3. Remote user if available
4. Request time stamp
5. HTTP request line
6. HTTP response status code
7. Request content length if available,

otherwise "-"
8. Referring URL if available, otherwise "-"
9. User agent if available, otherwise "-"

10. Amount of time, in milliseconds, to
process the request

11. Value of the cookie header
12. Translated URL (the full path of the

actual server resource, if available)

Agent User agent if available, otherwise "-"

Referer URL the user visited to gain access to a page on
this site

Using the Domlog database

Another option provided by the Domino server for HTTP logging is the Domlog.nsf database. This
database logs information similar to the text access logs listed previously, but stores the data in a
Domino database. This database has some built-in views that categorize the log entries by date, user,
response code, and others. The database can also be customized in case other groupings are more
helpful.

The Domlog can be enabled in the server document as shown in the following figure.

After the Domlog is enabled, the HTTP task automatically creates the domlog.nsf database the next time
it starts. The Domlog continues to grow in size unless it is manually cleaned out. A built-in cleanup agent
is contained in the domlog.nsf database, but it is disabled by default. We strongly recommend that you
enable this agent or create a cleanup agent of your own, because the Domlog can grow to use large
amounts of disk space and potentially lead to server crashes.

Important
Do not create a full text index for the Domlog database.

Document generated by Confluence on Apr 04, 2008 19:03 Page 361

The following figure shows the views that are already included in the Domlog database.

Views included in the Domlog database

The following figure shows one of the documents that is created in the Domlog database.

Document created in the Domlog database

Common log settings

Document generated by Confluence on Apr 04, 2008 19:03 Page 362

In the server document, you can modify a few fields if you want to exclude certain URLs, methods, and
so on, as shown in the following figure. These settings affect both the Domlog and text logs.

Custom logging

It is possible for your application to log its own information in other formats. For example, it may be
helpful for your application to log specific actions within a particular form. The actions can be tracked by
creating entries within a separate database or even within the application itself.

Custom logging can also include print statements within agents that are meant to track the execution
path of an agent. These can be helpful for debugging purposes, but we recommend that you disable
these during normal operations, because the extra lines may not add much individually but can bloat the
log.nsf file of the server.

Document generated by Confluence on Apr 04, 2008 19:03 Page 363

Performance considerations

This page last changed on Apr 03, 2008 by dalandon.

Performance should always be considered when developing applications. This section contains best
practices for performance, but there may be many more.

Using Summary Reports instead of views

While View Indexing allows caching of view content, which facilitates faster access to Domino data, the
repeated runtime queries of the View Index for certain reusable data subsets can cause undue stress on
the server as well as impact the user experience. To achieve the same functionality, we discuss the
creation and maintenance of a Summary Report. A Summary Report is a document that contains metric
data and other analytic content. Applications can use this report to facilitate low-cost metadata queries
against large data collections.

Concurrent Web agents

By default, agents that run as a result of HTTP requests are run one after the other in a sequential, serial
manner. This can be a huge performance bottleneck if you plan to use agents in your application, so you
may have to modify the server configuration to allow Web agents to run concurrently. This option is in
the Server Document on the Internet Protocols -> Domino Web Engine tab. You must reload the
HTTP task in order for the change to take effect.

Document generated by Confluence on Apr 04, 2008 19:03 Page 364

Security considerations

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Development considerations
• Server considerations
• Additional topics in this section

Introduction

If you are going to place your application for the world to access it, you cannot expect everyone to only
look at the data that you want them to. You have to be proactive and ensure that the user can only
access the data that you want them to see. While the Domino administrator tries to ensure that the
server is secure, you as the developer to make certain that the database is secure.

Development considerations

• Protect all views by including a $$ViewTemplateDefault with no embedded view or $$ViewBody field
and put a redirect meta tag in the HTML header as shown in the following example.

URL:=@GetProfileField("Setup" ; "URL");
"<meta http-equiv=\"refresh\" content=\"0; URL="+url+"\"></head>"

• Use a "$$ViewTemplate For ViewName" for each view that is seen from the Web.
• Create a Web redirect form to prevent access to the default design elements. See Working with Web

site rules for more information about creating rules.
° Navigators: Set the Incoming URL Path set to /.nsf/$DefaultNav and the redirect to your home

page or warning page.
° Forms: Set the Incoming URL Path set to /.nsf/$DefaultForm and the redirect to your home

page or warning page.
° Views: Set the Incoming URL Path set to /.nsf/$DefaultView and the redirect to your home

page or warning page.
• To prevent misuse of database searching, include a $$SearchTemplateDefault with no $$ViewBody

field.
• Protect your agents from being invoked by malicious users by using the following methods:

° Validating the cgi variables such as referring_server.
° Check that the form being processed is allowed.
° If the agent is not set to "run as Web user", then set a hidden computed field on the form to

pass user information.
° Use a cookie, if the site is set to SSO.

• Do not rely solely on CGI variables in your security implementation.
• Be aware that custom authentication using @Password may be compromised.
• Use SSL for any database with sensitive information.

Document generated by Confluence on Apr 04, 2008 19:03 Page 365

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+Web+site+rules
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Working+with+Web+site+rules

Server considerations

• Review the access control list (ACL) settings for every database and template on your server,
including .NSF, .NTF, .BOX, .NS2, .NS5, .NS4, .NSG, and .NSH.

• Set Anonymous and Default access privileges to "No Access" for all databases except for the home
page and Domino Web Configuration and Custom Login databases, if you use them. This only lets
validated users into databases.

• Create a separate organization for all Domino servers that are located on the Internet or outside
your firewall system. Then cross-certify the external Domino servers with internal Domino servers.
You can use Directory Assistance and cascade your primary Domino Directory, if your Domino users
need access to the site.

• Secure the login and databases with sensitive data by using SSL.

Note
Domino 6 and later do not allow database browsing, but you can download an application from
the Lotus Sandbox that allows customers to retain this functionality if they really want it.
Therefore it is no longer a consideration for you to turn off database browsing for Web clients, so
users cannot look to find databases, unless they know the database name to access it.

Additional topics in this section

• SSL support

Document generated by Confluence on Apr 04, 2008 19:03 Page 366

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/SSL+support

SSL support

This page last changed on Apr 03, 2008 by dalandon.

• Introduction
• Setting up SSL
• Additional topics in this section

Introduction

Secure Sockets Layer (SSL) is cryptographic protocol that encrypts the communications between the
server and the browser for Web browsing. It can be also used for secure communications with LDAP,
POP3, IMAP, DIIOP, and SMTP protocols. You can set up a Domino server so that clients and servers that
connect to the server use SSL to ensure privacy on the network. You set up SSL on a
protocol-by-protocol basis by enabling SSL for each protocol on the server document in the Domino
Directory.

Setting up SSL

To set up SSL on your server, you need a server certificate (saved in a key ring) from an Internet
certificate authority (CA). You can get a server certificate from either a Domino with a self-certificate or
third-party CA and then install it in a key ring. A key ring is a binary file that uniquely identifies the
server. The key ring file is stored on the server's hard drive and contains a public key, name, an
expiration date, and a digital signature. The key ring also contains root certificates that are used by the
server to make trust decisions.

The key ring's file name is entered either on the server document, if you are not using Internet
Documents or on the Web site document.

Document generated by Confluence on Apr 04, 2008 19:03 Page 367

Server document

For each Web site document, enter the key ring file name, if it is to use SSL.

Document generated by Confluence on Apr 04, 2008 19:03 Page 368

Web site document

For internal use or testing, you can use a server certificate created by the Domino server called a
self-certificate. Since it is not one of the trusted CAs, your browser gives you a warning about trust. You
can accept the certificate and you will not be prompted again. Each browser and version have a different
sequence needed to accept the certificate. This may be easy for testing or a controlled group of users,
but for general public use, it is best to buy a certificate from a trusted source.

Document generated by Confluence on Apr 04, 2008 19:03 Page 369

Firefox warning message

Additional topics in this section

• Setting up SSL with a self-certified certificate

Document generated by Confluence on Apr 04, 2008 19:03 Page 370

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Setting+up+SSL+with+a+self-certified+certificate

Setting up SSL with a self-certified certificate

This page last changed on Apr 03, 2008 by dalandon.

For development, test with SSl if your production site is going to run Secure Sockets Layer (SSL). You
can either spend the money for a CA certificate or create your own. If your testing is going to be done
with a controlled group, then a self-certified certificate will work. Make sure to tell the users to accept the
certificate.

Creating a self-certified certificate

From the Notes client, open the Server Certificate Admin application, and then click Create Key Rings &
Certificates.

Home page

Click Create Key Ring with Self-Certified Certificate and complete the fields as shown in the
following figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 371

Entry form

Then click Create Key Ring with Self-Certified Certificate. Use the values from the following table to
complete the fields in the Key ring created with self-signed certificate window shown below the table.

Field Enter

Key ring file name A file name with the extension .KYR.

Key ring password At least 12 case-sensitive, alphanumeric
characters.

Common name A descriptive name that identifies the server
certificate, such as, RiverBend CA.

Organization The name of the organization, for example, a
company name such as Acme.

Organizational Unit (Optional) Name of certifier division or
department.

City or Locality (Optional) The organization city or locality.

Document generated by Confluence on Apr 04, 2008 19:03 Page 372

State or Province Three or more characters that represent the state
or province in which the organization resides, for
example, Massachusetts. (For U.S. states, enter
the complete state name, not the abbreviation.)

Country A two-character representation of your country,
for example, US for United States or CA for
Canada.

Key ring created with self-signed certificate window

Now copy the key ring file and stash (.STH) file from you local hard drive to the data directory of the
Domino server. You either have to rename the files to keyfile.kyr and keyfile.sth or change the file name
on the Web site documents.

Now configure the server to use SSL for the ports that you want encrypted.

Document generated by Confluence on Apr 04, 2008 19:03 Page 373

Server error handling

This page last changed on Apr 03, 2008 by jservais.

The authentication, authorization, and general errors can be handled on a Web site or individual database
basis. If there is error handling in the database, it is used. Otherwise, what is configured in the Domino
Web Configuration database is used for error handling. The Domino Web configuration database can be
set up by a Web site or server. For a global error form that handles missing files on the OS file system,
then use the Global error form. See the Error handling section for information about using database
specific error forms.

Topics in this section

• Global 404 error form
• Web server configuration database

Document generated by Confluence on Apr 04, 2008 19:03 Page 374

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Error+handling
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Global+404+error+form
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+server+configuration+database

Global 404 error form

This page last changed on Apr 03, 2008 by jservais.

To have an error page that handles all 404 errors, including those from missing files in the html folder,
set the following entry in the server's notes.ini file or in the server's configuration document:

HTTPMultiErrorPage=/error.html

The value (/error.html) must point to an HTML page that has anonymous access. The error page URL is
relative to the server's base domain. For example, for the www.riverbend.com Web site, the error page is
www.riverbend.com/error.html. Since pages or forms in databases have not worked, it has to be an HTML
file that is stored in data/domino/html.

After putting the file on the server and updating the notes.ini file, you must restart the server for the
changes to be accepted.

Document generated by Confluence on Apr 04, 2008 19:03 Page 375

Web server configuration database

This page last changed on Apr 03, 2008 by jservais.

• General information
• Error and response form mapping

General information

Also known as the Domcfg since it is named domcfg.nsf on the server, the Web server configuration
database allows us to specify custom forms for logging in, changing a password, and reporting errors.
The database is not created on a server by default, so administrators must create this database and
should provide the file name domcfg.nsf, since the server looks for that file name explicitly. The server
detects this database automatically. Therefore, no restart is required.

Error and response form mapping

You can specify the default error forms that will be used by an individual Web site or by server. The error
forms are used by most specific to least specific, so error forms in a database are used first, then the
Web site specific ones are use, then the server specific forms are use, and finally the default Domino
error pages are used.

You can create forms inside the Domino Web configuration database or in another database. The
database must have at least reader access for users to see the error forms. If you select Specific Web
Site/Virtual Server, then you see a field to enter the Web site, virtual server name, or IP address for the
server.

Document generated by Confluence on Apr 04, 2008 19:03 Page 376

Document generated by Confluence on Apr 04, 2008 19:03 Page 377

Topology

This page last changed on Apr 03, 2008 by jservais.

The location of Domino and other servers within the Riverbend Coffee and Tea Company environment can
affect the way applications operate. If the application will reside on a server located in the demilitarized
zone (DMZ), then it may have different and restricted access to some of the internal servers. If the
application resides on a server located inside the intranet, then that can mean it has greater access to
other internal servers for purposes of external database lookups and data retrieval.

In addition, there may be proxy servers between the application and users of that application, which can
impact caching and other factors that can affect how we build a particular application.

When designing and creating applications, always keep in mind where the application will reside within
the Riverbend Coffee and Tea Company environment.

Document generated by Confluence on Apr 04, 2008 19:03 Page 378

Working with Web site rules

This page last changed on Apr 03, 2008 by jservais.

Web site rules let you adjust the way Domino will use URLs and authentication. The rules are created by
the Domino administrator in the Domino Directory under Configuration/Web/Internet Sites. The rules are
tied to a specific Web site document, except for the rules that are tied to the default Web site. With Web
site documents, you can specify the way different sites work on your server. You can have
www.riverbendcoffee.com point to the home page, while mail.riverbendcoffee.com takes the user to their
mail file.

The rules let you do such things as have easier navigation. Instead of the user typing in
www.riverbendcoffee.com/web/docs/supporthelp.nsf/help.html, you can use a substitution rule to change
it to www.riverbendcoffee.com/help.

Topics in this section

• Directory rules
• HTTP Response Header rules
• Overriding Session Authentication rules
• Redirection and Substitution rules

Document generated by Confluence on Apr 04, 2008 19:03 Page 379

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Directory+rules
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTTP+Response+Header+rules
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Overriding+Session+Authentication+rules
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Redirection+and+Substitution+rules

Directory rules

This page last changed on Apr 03, 2008 by dalandon.

A directory rule maps a folder to a URL pattern. When the Domino server receives a URL that matches
the pattern, the server uses the folder to access the resource. Directory rules can only be used to map
the location of files that are to be read directly, such as HTML files and graphic files, and executable
programs, such as CGI programs, to be run by the operating system. Directory rules cannot be used to
map the location of resources, such as Domino databases or servlets.

When you install a Domino Web server, some folders are created automatically. These folders are
mapped by directory rules that are defined on the Configuration tab of the Web site document. When the
Web server starts, it automatically creates internal rules to map these folders to URL patterns.

The following folders are created by default:

• HTML folder for non-graphic files
• Icons folder for graphic images such as the view gifs
• CGI-bin folder for CGI programs
• Java folder for Java applets

Document generated by Confluence on Apr 04, 2008 19:03 Page 380

Web site document

Directory rule

Document generated by Confluence on Apr 04, 2008 19:03 Page 381

HTTP Response Header rules

This page last changed on Apr 03, 2008 by jservais.

• Reasons for using Response Header rules
• Creating Response Header rules

Reasons for using Response Header rules

You might want to disguise the fact that your application is being served by a Lotus Domino HTTP server.
For this reason, you can create an HTTP Response Header rule document to overwrite the Server
response header with a custom value. Response Header rules can also be useful if you want custom
headers to be sent from the server. These headers can then be read and possibly set to new values by
your applications.

Creating Response Header rules

Note: In order to use these documents, the Domino server must be using Internet sites.

The Domino server can overwrite HTTP response headers if your application needs to do so. To create
one of these rules, open a Web site document from the Internet site view of the server's address book.
Select Web Site-> Create Rule as shown in the following figure.

On the Basics tab (see the following figure), change the Type of Rule field to be HTTP response
headers. Then configure the fields as shown in the figure.

Document generated by Confluence on Apr 04, 2008 19:03 Page 382

One use is to support gzip files. Gzip is used by Domino for Domino Web Access, but it is not available to
developers yet. You can create a Response Header rule to allow the use of gzip files that are stored on
the hard drive. With the gzip rule, any file that has an extension of .gz that is requested from the site
receives a Content-Encoding header with a value of "gzip". This causes the Web browser to decompress
the file prior to using it to render the page.

Response header for GZIP files

Further documentation is available in the Administrator Help file and the KnowledgeBase.

Document generated by Confluence on Apr 04, 2008 19:03 Page 383

Overriding Session Authentication rules

This page last changed on Apr 03, 2008 by jservais.

Note
This type of Web site rule is only usable when Internet sites are being used on the server.

If Session Authentication is enabled on the Domino server, then the browser client is expected to send a
cookie to the server to identify the user who is attempting to access the server resource. If a request
reaches the server without a cookie, then the user is presumed to not be authenticated and is seen as an
anonymous user.

If Session Authentication is disabled on the server, then the client sends a special Authentication header
that contains the user name and password for the user. This is known as HTTP Basic Authentication.
Some technologies, such as RSS feed readers and WebDAV clients, are only able to use Basic
Authentication. If there are any RSS feed readers, WebDAV clients, or other Basic Authentcation-only
clients accessing the server, they require Basic Authentication be enabled on the server. Unfortunately
this may conflict with other requirements that necessitate having Session Authentication enabled on the
server.

For this reason, the Override Session Authentication Rule was introduced in Domino 7.0.2. This rule
allows the server to use Basic Authentication for specific requests, while Session Authentication is used
for all other requests. The rule must be configured for the URLs that need to use Basic Authentication.
This is done by populating the Incoming URL Pattern field after you create the rule.

Wildcard characters can be used to match multiple URLs, and multiple rule documents can be created if
necessary.

Document generated by Confluence on Apr 04, 2008 19:03 Page 384

Redirection and Substitution rules

This page last changed on Apr 03, 2008 by jservais.

• Introduction
• Using Redirection rules
• Using Substitution rules

Introduction

Both Redirection and Substitution rules change the incoming URL to point somewhere else. The main
difference is that substitution rules replace the matching section of the URL using wildcards, while the
Redirection rule is used recursively to replace a different section of the URL. The Substitution rule is great
for when you need to change a folder name and do not want URLs to change. Redirection can be used to
hide the Domino file extensions.

Using Redirection rules

Redirection rules can be used on the server for various reasons:

• Provide aliases for databases:
Sometimes it is helpful to have a shorter name or alias for a database that will be accessed via
HTTP. For this reason, we can create a Redirection document on the Domino server to make it
easier for users to reach our application, or specific pages or resources within the application.

• Disguise the Domino HTTP server:
For security reasons, it may be helpful to disguise the specific type of server that is hosting our Web
applications. If a user knows that a Domino server is serving an application, that user can try to
craft attacks to exploit vulnerabilities specific to that type of server. Redirection rules can be used so
that users do not see that an application has an .nsf extension, and HTTP response header rules can
be used to override the Server response header.

Using Substitution rules

Substitution rules use wildcards. If you do not use one, then the server appends /* to the end of the rule.
You can use the rule on the server for the following reasons:

• Move folders:
You need to move databases to a new folder but don't want to have old URLs break. A substitution
rule with an incoming pattern of /help/* and a replacement pattern of /product/docs, would let the
user access the databases in product/docs with either /help/ or /product/docs in the URL.

• Make the URL easier to remember:
So that the user does not have to remember

Document generated by Confluence on Apr 04, 2008 19:03 Page 385

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/HTTP+Response+Header+rules

www.riverbendcoffee.com/web/docs/supporthelp.nsf/help.html, you make a substitution rule to
change it to www.riverbendcoffee.com/help.

Substitution rule

Document generated by Confluence on Apr 04, 2008 19:03 Page 386

7.0 Developer tools and resources

This page last changed on Apr 03, 2008 by jservais.

This section provides links to additional information.

Topics in this section

• Domino resources
• Web development resources
• Web development tools

Document generated by Confluence on Apr 04, 2008 19:03 Page 387

http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+resources
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+development+resources
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+development+tools

Domino resources

This page last changed on Apr 03, 2008 by jservais.

Useful sites for Domino Web information

Site Description

Lotus Developer Domain
http://www.ibm.com/developerworks/lotus

The main site for Domino information

PlanetLotus.org A feed from 242 Lotus blogs updated hourly.

OpenNTF.org The home of open source Notes applications.

Lotus Greenhouse
https://greenhouse.lotus.com/home/login.jsp

Lotus Greenhouse is a premier showcase Web site
to experience Lotus products.

Notes.ini settings
http://www.ibm.com/developerworks/lotus/documentation/notes-ini

developerWorks - viewable by starting letter.

Notes.ini settings
http://www.admincamp.de/notesini- original
http://www.kalechi.com/notesini- backup

User maintained - viewable by name, categories,
and versions and fully searchable

Other topics

• Web development resources
• Web development tools

Document generated by Confluence on Apr 04, 2008 19:03 Page 388

http://www.ibm.com/developerworks/lotus
http://planetlotus.org/
http://openntf.org/internal/home.nsf
https://greenhouse.lotus.com/home/login.jsp
http://www.ibm.com/developerworks/lotus/documentation/notes-ini
http://www.admincamp.de/notesini
http://www.kalechi.com/notesini
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+development+resources
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+development+tools

Web development resources

This page last changed on Apr 03, 2008 by jservais.

• Useful Web development Web sites
• JavaScript libraries and reference sites
• Other topics

Useful Web development Web sites

Site Description

aListApart.com CSS and Web best practices

Bookmarklets
https://www.squarefree.com/bookmarklets/webdevel.html

Web development bookmarklets for all browsers

CSSZenGarden.com For CSS examples and information

kuler
http://kuler.adobe.com

kuler allows you to create, rate and download
color themes. This site provides inspiration when
trying to create a color scheme for a Web site or
Notes application.

slayeroffice
http://slayeroffice.com/tools/color_palette

slayeroffice has a number of good articles about
Web development, but its most useful feature is a
color palette creator. The site allows you to enter
a base color and two colors to mix it with and
presents you with 10 shades of the mixture.

URLencoder/URLdecoder Utility
http://www.albionresearch.com/misc/urlencode.php

w3c.org The home of the Internet standards

w3cSchools.com The basic how-to for HTML and JavaScript

JavaScript libraries and reference sites

Site Description

Ajaxian.com A site dedicated to improving Web development

devguru.com A another site for Web development information

Dojo
http://www.dojotoolkit.org/

Home of the Dojo JavaScript Library

jQuery
http://jquery.com

A fast, concise, JavaScript Library that simplifies
working with HTML documents

Document generated by Confluence on Apr 04, 2008 19:03 Page 389

http://alistapart.com/
https://www.squarefree.com/bookmarklets/webdevel.html
http://csszengarden.com/
http://kuler.adobe.com
http://slayeroffice.com/tools/color_palette
http://www.albionresearch.com/misc/urlencode.php
http://www.w3.org/
http://w3cschools.com/
http://ajaxian.com/
http://devguru.com/
http://www.dojotoolkit.org/
http://jquery.com

JSON.org
http://json.org

The home page for JSON information

MooTools
http://mootools.net

A compact, modular, OO JavaScript framework
that is designed for the intermediate to advanced
JavaScript developer

Prototype
http://www.prototypejs.org/

JavaScript Library

script.aculo.us
script.aculo.us

Provides an easy-to-use, cross-browser user
interface

Yahoo UI
http://developer.yahoo.com/yui

Provides a set of utilities and controls, written in
JavaScript

EXT
http://extjs.com

Provides for a cross-browser UI libraries

Other topics

• Domino resources
• Web development tools

Document generated by Confluence on Apr 04, 2008 19:03 Page 390

http://json.org
http://mootools.net
http://www.prototypejs.org/
http://developer.yahoo.com/yui
http://extjs.com
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+resources
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+development+tools

Web development tools

This page last changed on Apr 03, 2008 by jservais.

• Useful sites for Web Development tools
• Other topics

Useful sites for Web Development tools

Site Description

Eclipse
http://www.eclipse.org

Eclipse project has lots of add-on tools. It is the
basis of the Notes 8 client, which makes it a
good platform to start learning it now.

CSS Tab Designer
http://www.highdots.com/css-tab-designer

A tool to build nice tags without being a graphic
artist.

Notepad++
http://notepad-plus.sourceforge.net/uk/site.htm

Editor for text, HTML, JavaScript, C, and so on
with extensions.

Scite http://scintilla.sourceforge.net/ Text editor.

Mozilla Firefox
http://www.mozilla.com/en-US/

Browser extension.

Web Developer Toolbar
https://addons.mozilla.org/en-US/firefox/addon/60

Useful Web development tools, such as live CSS
edit.

Firebug
https://addons.mozilla.org/en-US/firefox/addon/1843

You can edit, debug, and monitor CSS, HTML, and
JavaScript live in any Web page.

View Source Chart
https://addons.mozilla.org/en-US/firefox/addon/655

Creates a graphic view of a Web page.

HTML Validator
https://addons.mozilla.org/en-US/firefox/addon/249

Helps you validate the current page.

FireShot
https://addons.mozilla.org/en-US/firefox/addon/5648

A browser screen capture tool.

LiveHTTPHeaders
http://livehttpheaders.mozdev.org/?ver=0.13.1

View HTTP headers of a page while browsing.

Javascript Debugger
https://addons.mozilla.org/en-US/firefox/addon/216

The way to debug JavaScript.

Microsoft Internet Explorer Browser add-ons.

Microsoft Script Debugger and Debug toolbar
http://msdn2.microsoft.com/en-us/downloads/default.aspx

Contains all Microsoft add-ons for Internet
Explorer.

Fiddler
http://www.fiddlertool.com/fiddler

An HTTP debugging proxy that logs all HTTP traffic
between your computer and the Internet.

DebugBar Debugger for IE lets you see the HTML, JavaScript

Document generated by Confluence on Apr 04, 2008 19:03 Page 391

http://www.eclipse.org
http://www.highdots.com/css-tab-designer
http://notepad-plus.sourceforge.net/uk/site.htm
http://scintilla.sourceforge.net/
http://www.mozilla.com/en-US/
https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/1843
https://addons.mozilla.org/en-US/firefox/addon/655
https://addons.mozilla.org/en-US/firefox/addon/249
https://addons.mozilla.org/en-US/firefox/addon/5648
http://livehttpheaders.mozdev.org/?ver=0.13.1
https://addons.mozilla.org/en-US/firefox/addon/216
http://www.microsoft.com/windows/products/winfamily/ie/default.mspx?wt_svl=10003XPHa1&mg_id=10003XPHb1
http://msdn2.microsoft.com/en-us/downloads/default.aspx
http://www.fiddlertool.com/fiddler

http://www.debugbar.com and CSS.

Other topics

• Domino resources
• Web development resources

Document generated by Confluence on Apr 04, 2008 19:03 Page 392

http://www.debugbar.com
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Domino+resources
http://www-128.ibm.com/developerworks/wikis/display/dominoappdev/Web+development+resources

Looking ahead to version 8.5

This page last changed on Apr 04, 2008 by heinsje.

• Looking ahead to Domino and Domino Designer 8.5
• Domino Designer 8.5
• New options for rich text fields on Notes forms
• Well-formed XML
• Auto-classing support
• Theming support
• XPages and custom controls

Looking ahead to Domino and Domino Designer 8.5

With Lotus Domino and Domino Designer 8.5, IBM provides new options for Web application
development. Developers can leverage these options for new or existing Domino applications to provide
modern interfaces that exploit Web 2.0 capabilities.

Domino Designer 8.5

Domino Domino 8.5 is re-parented into Eclipse to provide new developer capabilities while preserving the
developer's and company's investment in applications and skills. Developers have new and refined
navigation options, new editors for CSS, HTML, and XML, and additional capabilities and design elements.

New options for rich text fields on Notes forms

Developers can use Dojo control for rich text fields in Notes forms for Web applications. This new option
is in addition to the Domino supplied applet, HTML or 'Best Fit for OS' option that is available in Domino
Designer 8.0 and earlier. As a developer, you can select the new "Using JavaScript control" option in the
rich text property box in Domino Designer 8.5, and the Domino-supplied Dojo control is provided for rich
text fields in the Web application.

Well-formed XML

The HTML generated by the Domino 8.5 Web server can be valid XML that can be processed by
XML-based processors. This does not include the following code:

• passthru HTML,
• Application-supplied HTML in HTML Head Content
• HTML in the templates in datadirectory/domino/templates

Document generated by Confluence on Apr 04, 2008 19:03 Page 393

Auto-classing support

With Domino 8.5, class attributes are automatically added to certain HTML that is generated for Notes
objects. Developers can apply style sheets to a larger set of Notes objects than in prior versions and use
JavaScript on a larger set of Notes objects.

Theming support

Developers can exploit new Domino Designer 8.5 options to apply themes to all design elements in an
NSF for use in Web browser applications running on Domino 8.5.

XPages and custom controls

An XPage is a new design element based on JavaServer Faces (JSF) technology that lets developers
create Web 2.0 enabled pages for use in Web browser applications running on Domino 8.5. XPages
remove the barrier of Web programming in Domino by providing advanced page design capabilities and
complete control of the generated markup. They also allow access to any kind of data and provide an
easy method for localizing applications. XPages includes the following features:

• AJAX enabled (for example, partial page refresh, type ahead capability, and so on)
• Advanced Web control library (tabbed panel, and so on)
• Full support for styling by using CSS
• Fully extensible by using custom controls (composite controls or Java-based controls) or JSF

extensions
• Support for multiple clients (Web, rich client, and so on)
• JavaScript scripting language support for client-side and server-side action
• Pre-built simple actions provided for most common cases
• Direct access to Java libraries on the server

A custom control is a collection of controls that are stored as a single object. Similar to subforms in
Domino Designer, custom controls are design elements that you can create once and add to multiple
XPages. When you update a custom control, every XPage that uses that custom control gets updated with
the changes, saving developer time and effort.

Document generated by Confluence on Apr 04, 2008 19:03 Page 394

	Space Details
	Available Pages
	0.0 Preface
	Riverbend Coffee and Tea Company

	1.0 Primer
	HTML primer
	Content type
	DOCTYPE
	Working with HTML in Domino

	Java primer
	A simple Java program
	Introduction to applets
	Introduction to classes and objects
	Working with Java in Domino Designer

	JavaScript primer
	DHTML
	The Document Object Model
	Using JavaScript with HTML
	Working with JavaScript in Domino Designer

	Styles and CSS primer
	Web 2.0 primer
	Introduction to AJAX
	Introduction to JSON

	Web services primer
	Web standards primer
	Application programming interface

	XML primer

	2.0 Getting started
	Architectural, project, and visual design considerations
	Architectural patterns
	Thoughts about content

	Domino Web capabilities
	Planning for accessibility and compliance
	Understanding the Web browser client environment

	3.0 Understanding the Domino design elements
	Database
	Default Launch Elements
	Tab specific database functionality

	Domino design elements
	A design elements overview
	Adding HTML to a design
	All Domino URLs
	CGI variables
	Changing the content type of a design element
	Common design properties on Web applications
	Styling text for the Web
	Working with the DOCTYPE

	Agent design elements
	Applet design elements
	Design element multi-aliasing
	File resources design elements
	Folder design elements
	Form design elements
	HTMLOptions and HTMLTagAttribute fields
	Special reserved fields
	Understanding the form HTML source code
	Using forms versus pages

	Frameset design elements
	Image resource design elements
	Java library design elements
	JavaScript library design elements
	LotusScript library design elements
	Page design elements
	Using pages to submit data

	Profile documents
	Shared field design elements
	Subforms design elements
	View design elements
	Rapid application development
	SearchTemplate

	Web service design elements

	4.0 Building Domino Web applications
	Error handling
	Input validation - Client side
	Input validation - Server side
	Interactive data (Web 2.0)
	Login screens
	Built-in forms using $$LoginUserForm
	Custom login screens using Domcfg.nsf
	Database that came with Domino R5

	Navigation techniques
	Moving past the frameset - Making Web-based applications that do not look like Lotus Notes
	No more twisties - Using single category and a combobox to filter the view
	View-based menus

	Personalization
	Searching
	Creating custom and advanced searches using Domino
	Customizing the search results display
	Searching via Domino URL commands
	Searching via FTsearch and DBSearch

	robots.txt
	Search engines and search engine optimization
	SEO techniques

	URL considerations
	User management
	Using interactive data and Web services
	Working with data
	JSON
	RSS
	Using query views

	5.0 Extending rich client applications for Web clients
	Benefits and pitfalls of extending rich client applications for Web clients
	Data management in hybrid rich and Web client applications
	Defining functional requirements based on client type
	Developing hybrid rich client and Web client applications

	6.0 Server configuration
	Logging
	Performance considerations
	Security considerations
	SSL support
	Setting up SSL with a self-certified certificate

	Server error handling
	Global 404 error form
	Web server configuration database

	Topology
	Working with Web site rules
	Directory rules
	HTTP Response Header rules
	Overriding Session Authentication rules
	Redirection and Substitution rules

	7.0 Developer tools and resources
	Domino resources
	Web development resources
	Web development tools

	Looking ahead to version 8.5

	titlepage.pdf
	Local Disk
	Untitled Document

